DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING (MATCH) LABORATORY FOR CHEMICAL TECHNOLOGY

IMPROOF: INTEGRATED MODEL GUIDED PROCESS OPTIMIZATION OF STEAM CRACKING FURNACES

S.H. Symoens, M.R. Djokic, J. Zhang, G. Bellos, D. Jakobi, J. Weigandt, S. Klein, F. Battin-Leclerc, G. Heynderickx, J. Van Thielen, B. Cuenot, T. Faravelli, G. Theis, P. Lenain, A.E. Muñoz, J. Olver, <u>K.M. Van Geem</u>

2018 Spring National Meeting, Orlando, Florida, April, 24, 2018

GHENT UNIVERSITY

IMPROOF IS ALL ABOUT:

Renewable fuel characterization

- experimental activity
- kinetic mechanisms

Advanced 3D modeling

- CFD RANS/LES
- Reactor optimization
- pilot plant simulation

Innovative Furnace System developments and integration

- oxy-fuel combustion

- emissivity coating

- coke formation

- 3D reactor testing

Upscaling and Demonstration

<u>OUTLINE</u>

- Introduction
- Objectives
- Coke formation on high-temperature alloys and 3D reactor technology
- Conclusions

<u>OUTLINE</u>

- Introduction
- Objectives
- Coke formation on high-temperature alloys and 3D reactor technology
- Conclusions

CONCEPT AND OBJECTIVES

- Novel combustion technology using alternative fuels and oxy-fuel combustion
- Demonstrate the individual impact of **novel** emissive, **reactor** and refractory materials **on pilot scale (TRL5)**
- Demonstrate the power of advanced process simulation (high performance computing and CFD) for furnace design and optimization
- . Demonstrate the technical economic and environmental sustainability of the IMPROOF furnace at TRL6
- Coke formation reduction and real time optimization

MULTI SCALE APPROACH

Arocess

Cr

OUTLINE

- Introduction
- Objectives
- Coke formation on high-temperature alloys and 3D reactor technology
- Conclusions

COKE FORMATION

Deposition of a carbon layer on the reactor surface

Thermal efficiency

Product selectivity

Decoking procedures

[Muñoz, 2013]

Estimated annual cost to industry: \$ 2 billion

Optimization by

- Feed additives
- Metallurgy & surface technology
- 3D reactor technology

L. Benum, "Achieving Longer Furnace Runs at NOVA Chemicals," in AIChE Spring National Meeting, 14th Annual Ethylene Producers' Conference, New Orleans, Louisiana, 2002.

COKES FORMATION

3D REACTOR TECHNOLOGY

Improve the reactor by decreasing $\rm T_{\rm gas/coke}$

$$Q = U \cdot A \cdot \left(\frac{T_{gas/coke}}{T_{bulk}} - T_{bulk} \right)$$

- Increase tube area (A)
- Increase heat transfer coefficient (U)

M. Zhu, "Large eddy simulation of thermal cracking in petroleum industry," 2015.

SE

MILLISECOND BENCHMARK SIMULATION

13

model[®]

SUPERCOMPUTING INFRASTRUCTURE

From \$15M world-record supercomputer to smartphone in 20 years

"SUPER" calculations are possible

But are they useful?

COMPARISON TO BARE REACTOR

SCOPE	
976.7	TMT _{max} [°C]
1.40	Δp/Δp ₀ [-]
1.006	(P+E)/(P+E) ₀ [-]
0.536	P/E [-]

COMPARISON OF TECHNOLOGIES

UNIVERSITY

		SCOPE
Х	[%]	80.6
P/E	[-]	0.536
C_2H_4	[wt%/wt _{%0}]	0.987
C_3H_6	[wt%/wt _{%0}]	1.033
1-3.C ₄ H ₆	[wt%/wt _{%0}]	0.958
C_2H_6	[wt%/wt _{%0}]	0.955
CH_4	[wt%/wt _{%0}]	1.002
C_2H_4	[wt%]	33.77
C_3H_6	[wt%]	17.96
1-3.C ₄ H ₆	[wt%]	1.61
C_2H_6	[wt%]	1.55
CH_4	[wt%]	19.34

COMPARISON OF TECHNOLOGIES

		SCOPE
Х	[%]	80.6
P/E	[-]	0.534
C_2H_4	[wt%/wt% ₀]	0.985
C_3H_6	[wt%/wt% ₀]	1.034
1-3.C ₄ H ₆	[wt%/wt% ₀]	0.953
C_2H_6	[wt%/wt% ₀]	0.950
CH ₄	[wt%/wt% ₀]	1.000
C_2H_4	[wt%]	33.70
C_3H_6	[wt%]	17.99
1-3.C ₄ H ₆	[wt%]	1.60
C_2H_6	[wt%]	1.54
CH ₄	[wt%]	19.30

GHENT UNIVERSITY

SIMULATION ACCURACY GOOD ENOUGH?

- Burner geometry detail?
- Gas radiative properties?
- Furnace Reactor coupling?

3D REACTOR TECHNOLOGY

Enhanced heat transfer & mixing -> Less cokes?

Increased pressure drop Lower olefin selectivity?

Long term performance and stability?

Centralloy[®] ET 45 Micro Centralloy[®] HT E Centralloy[®] HT E + SCOPE[®]

Alloy	Composition [wt %]								
	C	Si	Mn	Cr	Fe	Ni	Al	Nb	Additions
ET 45 Micro	0.45	1.6	1.0	35	bal.	45	-	1.0	MAE, RE
HT E	0.45	-	-	30	bal.	45	4.0	0.5	MAE, RE

RE: reactive elements; MAE: micro-alloying elements

PILOT PLANT

21

EXPERIMENTAL PROGRAM

- Steam treatment for 10 hours
- 1CC: COT = base; 6 hours
- 2CC: COT = base; 2 hours
- 3CC: COT = base; 6 hours
- 4CC: COT = base + 110 °C/ + 160 °C*; 1.67 hours
- 5CC: COT = base; 12 hours
 *SCOPE[®]

✓ Decoking was performed after every <u>C</u>racking <u>C</u>ycle (CC)
 ✓ Prior to each CC a pre-sulfiding step was performed

TUBE METAL TEMPERATURES

TUBE METAL TEMPERATURES

UNIVERSITY

HT E CC3 HT E CC5 6508912 HT E SCOPE CC3 20 HT E SCOPE CC5 0 Result 0° 30 °C ~10 % lower Ĺ ↓ −20 Fuel gas consumption ۸ ΔT Bare Straight Helix SmallFins -40 Industrial Optimized geometry Helix -60 280 300 340 360 260 320 Time, min 900 930 960 1000 1030 °C **GHENT**

Schietekat, et al., "Computationally efficient CFD simulations with detailed free-radical mechanisms", in AIChE 24 Annual Meeting, San Francisco, CA, 2013.

Gas consumption

TUBE METAL TEMPERATURES

30°C lower tube metal temperature reduces fuel consumption by ~10%

PRODUCT YIELDS

2 (CC2), 6 (CC3) and 12 h (CC5) cracking cycles

Schietekat, et al., "Computationally efficient CFD simulations with detailed free-radical mechanisms", in AIChE 26 Annual Meeting, San Francisco, CA, 2013.

1CC: COT; 6 hours 2CC: COT; 2 hours 3CC: COT; 6 hours 4CC: COT+110 °C/+160 °C*; 1.67 hours 5CC: COT = base; 12 hours *SCOPE

> Increase after high T exp Reduction after high T exp Reduction after high T exp

GHENT UNIVERSITY

Extrapolation for 12 h coke

Assumptions: 2 h (CC2) = Catalytic 6 h (CC3) = asymptotic

GHENT UNIVERSITY

Extrapolation based on tests prior to high T (EOR) exposure

GHENT UNIVERSITY

Coke after high T exposure

31

Estimation coking curve

GHENT UNIVERSITY

A Comparative Study of Alumina- and Chromia-Forming Alloys", in NACE Corrosion, 2013.

FOR A FEW DOLLARS MORE

GHENT UNIVERSITY

NEXT STEPS

- Testing high emissivity coating's performance in the pilot plant furnace/cracker at UGent at <u>TRL5 level</u>
 - benchmark to <u>uncoated</u> ethylene furnace by calculating the thermal efficiency of the <u>improved</u> furnace
- Comparison SCOPE[®] vs bare in reactive 3D CFD simulations

OUTLINE

- Introduction
- Objectives
- Coke formation on high-temperature alloys and 3D reactor technology
- Conclusions

CONCLUSIONS

- After high Temperature (EOR) exposure HT E performs better, while the performance of ET 45 Micro drops
- ET 45 Micro \rightarrow Oxide to carbide transition
- HT E \rightarrow Formation stable α -Al₂O₃ scale
- Combining the advanced coil material (HT E) and novel 3D reactor design (SCOPE[®]) leads to

Increased run lengths
 Improved product selectivities
 Longer lifetime of the reactor coils
 Higher energy efficiency of the furnace

<u>ACKNOWLEDGMENT</u>

 The work leading to this intervention has received funding from the European Union H2020 (H2020-SPIRE-04-2016) under grant agreement n°723706 and from the COST Action CM1404 "Chemistry of smart energy carriers and technologies".

Thank you for your attention!

<u>GLOSSARY</u>

- CC: Cracking cycle
- DMDS: dimethyl disulfide
- CFD: computational fluid dynamics
- RE: reactive elements
- MAE: micro-alloying elements
- RGA: refinery gas analyzer
- IR GA: infrared analyzer
- PGA: permanent gas analyzer
- COT: coil outlet temperature
- TMT: Tube metal temperature

Kevin M. Van Geem Full Professor

LABORATORY FOR CHEMICAL TECHNOLOGY

- E Kevin.VanGeem@ugent.be
- T +32 9 264 55 97
- M +32 478 57 38 74

www.ugent.be

- **f** Ghent University
- 🦉 @ugent
- in Ghent University

