

NEW TRENDS IN OLEFIN PRODUCTION Prof. Kevin M. Van Geem

EEPC 2017 ETHYLENE SEMINAR

Dresden - Germany Maritim Hotel & Internationales Congress Center

Wednesday 25 > Friday 27 October 2017

Structure of the chemical industry: chemistree

Plastics, electronic materials, Fibers, solvents, detergents, insecticides, pharmaceuticals

Acetic acid, formaldehyde, Urea, ethene oxide, Acrylonitrile, acetaldehyde, Terephtalic acid

Ethene, propene, 1,3-butadiene, Benzene, synthesis gas, ammonia Methanol sulfuric acid, chlorine

LPG, gasoline, diesel Kerosene

Oil, natural gas, coal, biomass, Rock, salt, sulfur, air, water

Emerging Technologies for Olefins Production [Synthesis]

Article 87B

EPC 2000

Robert Gartside ABB Lummus Global Inc.

Thomas McCall Kellogg Brown & Root

Eric Wagner Technip USA Corporation

Mark Whitney Stone & Webster Engineering Company

SHALE GAS

28/10/2017

New Trends in Olefin Production

Ismaël Amghizar Laurien A. Vandewalle Kevin M.Van Geem Guy B.Marin Engineering

Volume 3, Issue 2, April 2017, Pages 171-178

WHAT ABOUT PROPYLENE?

Ismaë IAmghizar Laurien A.Vandewalle Kevin M.Van Geem Guy B.Marin Engineering Volume 3, Issue 2, April 2017, Pages 171-178

NEW TRENDS IN OLEFIN PRODUCTION

EUROPEAN ETHYLENE EEPC **PRODUCERS COMMITTEE**

HOT TOPIC

25-27.10.2017

THE GREAT GAS GOLD RUSH

Cheap and abundant shale gas is changing how the chemical industry makes the ingredients of modern life. Chemists want to ensure that it's change for the better.

BY MARK PEPLOW

s the Ineos Intrepid cruised slowly through the sapphire waters of Norway's the first ever shipment of shale gas from the be transformed into carrying US shale gas, jets into the sky to herald her arrival. In start of a burgeoning business. More of these ing blocks needed to giant refrigerated tanks below decks, the ship 180-metre-long Dragon'-class vessels have fol- make a panoply of 2016. carried 27,500 cubic metres of liquid ethane — enough to fill 11 Olympic swimming pools. for ethane across the Atlantic Ocean. This gas, plastics, clothes, adhesives and medicines. Interpid also brought a message, painted in which is extracted from the ground through Interpid's voyage is a striking demonstration grant capital letters along her side: "SHALE the hydraulic fracturing of shale deposits, isn't GAS FOR PROGRESS".

The vessel's arrival in March 2016 brought stoves. Instead, it will The Ineos Insight, Frierfjord, chaperone tugboats sprayed United States to Europe - and marked the the chemical build- approaches port in

Scotland in Septembe Intrepid's voyage is a striking demonstration

destined to fuel power stations or domestic chemical industry and changing the origin of

NEW TRENDS IN OLEFIN PRODUCTION

26 | NATURE | VOL 550 | 5 OCTOBER 2017

6

Presentation outline

New trends in olefin production

- 1. Production technologies for olefins
- 2. How mature is steam cracking?
- 3. Electrification of the chemical industry

ETHYLENE PRODUCTION TODAY

FEEDSTOCKS RANGE FROM ETHANE TO HEAVY FRACTIONS

WHAT ABOUT CRUDE OIL?

#COMMODITIES AUGUST-24, 2017 / 11:54 AM / 2 MONTHS AGO

Saudi Aramco, SABIC launch bidding at key chemical project

Reem Shamseddine

3 MIN READ 9 f

JEDDAH, Saudi Arabia (Reuters) - Saudi Aramco and Saudi Basic Industries Corp (SABIC) have launched bidding for engineering work on their joint crude oil to chemicals project, industry sources said, a key step towards developing the \$20-billion-plus complex.

Expert financial and political views on Latin America MarketViews

Promoted by Dianomi

0

21ST INTERNATIONAL SYMPOSIUM ON ANALYTICAL AND APPLIED PYROLYSIS, NANCY, FRANCE, 12/05/2016

EEPC EUROPEAN ETHYLENE PRODUCERS COMMITTEE

21ST INTERNATIONAL SYMPOSIUM ON ANALYTICAL AND APPLIED PYROLYSIS, NANCY, FRANCE, 12/05/2016

EEPC EUROPEAN ETHYLENE PRODUCERS COMMITTEE

21ST INTERNATIONAL SYMPOSIUM ON ANALYTICAL AND APPLIED PYROLYSIS, NANCY, FRANCE, 12/05/2016

PLASTICS PRODUCTION KEEPS ON INCREASING

WHAT ABOUT FLUID CATALYTIC CRACKING?

Benefits and drawbacks of zeolite cataly	/sts
--	------

Catalyst

Ultrastable Y (USY
RE-USY
ZSM-5
Zeolite Beta

Pros	
More $C_3 = /C_4 =$; less coke	
mproved stability vs USY	
Excellent C_2 = yields	P
Enhanced C₄=	

Cons Poor stability Limited olefin potential Poor conversion activity; additive dilution effect High cost; poor stability

Typical yield of olefins for the I-FCC process				
	wt% of feed	wt% in C ₂ & lighter		
Ethylene	3–7	40-50		
		wt% in LPG		
Propylene	12-24	40-50		
i-Butylene	4-5	8-12		
Other butylene 5–12 20–25				

28-10-2017

NEW TRENDS IN OLEFIN PRODUCTION

Abundancy of cheap methane from shale gas and stranded gas

 \rightarrow Develop processes to valorize methane to higher hydrocarbons

Success for implementation will require:

- ✓ Breakthrough in catalysts, reactor design and separation processes
- ✓ Fundamental technology development
- ✓ Industry / government / academic partnerships

OXIDATIVE COUPLING OF METHANE (OCM)

Recent history

- 1982 Keller and Bhasin: pioneering work
- 2008 DOW Chemical awards "methane challenge grants"
- 2013 Small firms are developing technology for converting natural gas to fuel and chemicals
- April 2015 Siluria Technologies successful startup of demonstration plant for OCM

Demonstration unit for OCM in La Porte, Texas

Key challenges

- Strongly **exothermic** reaction(s)
- Inverse relationship between C2 hydrocarbon selectivity and CH4 conversion: low C2 yields

Reactor design!

REACTOR DESIGN FOR OCM

- rates
- Limited slip velocities (~ 1 m s⁻¹)

EEPC EUROPEAN ETHYLENE PRODUCERS COMMITTEE REACTOR DESIGN FOR OCM

Centrifugal instead of gravitational force field \rightarrow Process intensification

GAS-SOLID VORTEX REACTOR (GSVR)

• Higher slip velocity \rightarrow better heat and mass transfer to demonstrate the OCM process

NEW TRENDS IN OLEFIN PRODUCTION

Improved Siluria's Cash Cost (based on new ranges from presentation)

- OCM only: \$464/MT_{C2H4} (\$443-\$485/MT_{C2H4})
- OCM + ASU: \$447/MT_{C2H4} (\$430-470/MT_{C2H4})

Pearl project Shell

NEW TRENDS IN OLEFIN PRODUCTION

PROPANE DEHYDROGENATION

C₃ Oleflex Process

28-10-2017

A LOT OF ACTIVITY

25-27.10.2017

Company	Location	Country	Capacity (tpa)	Start-up	Notes
Fujian Meide Petrochemical	Fujian	China	660,000	2014	
Jiangsu Haili Chemical	Dafeng City, Jiangsu	China	510,000	2014	UOP technology
Ningbo Halyue New Material	Ningbo City, Zhejiang	China	600,000	2014	Lummus technolog
Shaoxing Sanyuan Petrochemical	Nantong	China	450,000	2013	
Shaoxing Sanyuan Petrochemical	Shaoxing	China	450,000		
Tianjin Bohai Chemical Industry Group	Tianjin	China	600,000	2013	
Tianjin Bohai Chemical Industry Group	Tianjin	China	600,000		
Tianjin Bohua Petrochemical	Tianjin	China	600,000	2013-H1	Lummus technolog
Yantai Wanhua Polyurethanes	Yantai, Shandong	China	600,000	2014-H2	
Zhangjiagang Yangzijiang Petrochemical	Zhangjiagang	China	600,000	2015	Phase 1
Zhangjiagang Yangzijiang Petrochemical	Zhangjiagang	China	600,000	2017	Phase 2
Zhejiang Julong	Pinghu, Zhejiang	China	450,000	2013	Phase 1, UOP technology
Zhejiang Julong	Pinghu, Zhejiang	China	750,000	2014	Phase 2, UOP technology
Zhejiang Shaoxing Sanjin Petrochemical	Zhejiang	China	450,000	2013	UOP technology
Egyptian Propylene & Polypropylene Co. (EPPC	Port Said	Egypt	400,000	2010-Oct	
OPC (Oriental Petrochemicals Co.)	Gulf of Suez	Egypt	250,000	2015-H1	Uhde technology
Mehr Petro Kimia	Pars Special Economic Energy Zone, Iran	Iran	450,000	2013	Ubde technology
Kazakhstan Petrochemical Industries (KPI)	Atyrau	Kazakhstan	500,000		Lummus technolog
Sibur	Tobolsk	Russia	510,000	2013	
Al-Waha Petrochemical	Al Jubail	Saudi Arabia	450,000	2009-May	
National Petrochemical Industrial Co (NatPet)	Yanbu	Saudi Arabia	400,000		
National Petrochemical Industrial Co (NatPet)	Yanbu	Saudi Arabia	400,000	2008-Dec	UOP technology
HMC Polymers	Mab Ta Phut	Thailand	300,000	2010	
Abu Dhabi Oil Refining (Takreer)	Abu Dhabi	UAE	500,000	2013-H2	UOP technology
Dow	Freeport, Texas	US	750,000	2015	UOP technology
Dow		US		2018	
Formosa Plastics USA	Point Comfort, Texas	US	600,000	2016	
Petrologistics	Houston, Texas	US	544,000	2010-Nov	

WHAT ABOUT COAL?

Almost a third of China's ethylene production could soon be coal based if integrated process technology challenges are overcome

Presentation outline

New trends in olefin production

- 1. Production technologies for olefins
- 2. How mature is steam cracking?
- 3. Electrification of the chemical industry

WHAT CAN BE IMPROVED?

Renewable fuel characterization

- experimental activity
- kinetic mechanisms

Advanced 3D modeling	
- CFD RANS/LES	

- pilot plant simulation

Innovative Furnace System developments and integration

- oxy-fuel combustion

- emissivity coating - 3D reactor testing

- coke formation

Upscaling and Demonstration

CONCEPT AND OBJECTIVES

- 1. Novel combustion technology using alternative fuels and oxy-fuel combustion
- 2. Demonstrate the individual impact of novel emissive, reactor and refractory materials on pilot scale (TRL5)
- 3. Demonstrate the power of advanced process simulation (high performance computing and CFD) for furnace design and optimization
- 4. Demonstrate the technical economic and environmental sustainability of the IMPROOF furnace at TRL6
- 5. Coke formation reduction and real time optimization

3D COILS

3D geometries to enhance heat transfer by

- Increased internal surface area
 - Fin-like structures
- Enhanced mixing
 - SCOPE (S+C)
 - Swirl Flow Tube (SFT)
 - MERT

Major drawback: Increased pressure losses

Models can help to descide on the optimal geometry

25-27.10.2017

NEW TRENDS IN OLEFIN PRODUCTION

NEW TRENDS: HIGH TEMPERATURE RESISTANT MATERIALS

Higher temperatures & shorter residence times Improved energy efficiency Reduce catalytic coke formation

Problem of ceramics: producing coils

http://www.nrel.gov/docs/fy01osti/28265.pdf

28/10/2017

NEW TRENDS IN OLEFIN PRODUCTION: DEVELOPMENTS & NEW INNOVATIONS

Presentation outline

New trends in olefin production

- 1. Production technologies for olefins
- 2. How mature is steam cracking?
- 3. Electrification of the chemical industry

GOVERNMENT INITIATIVES

VoltaChem: Our mission

 Accelerate innovation and implementation of *electrification* & *decarbonization* in chemicals.

21-09-2015

- Initiate and facilitate collaborative development of technology and associated business models.
- Addresses both the *indirect and* direct use of electricity within the chemical industry, involving stakeholders from chemicals, energy & equipment supply.

THE PETROCHEMICAL INDUSTRY

THE ENERGY SYSTEM OUTLOOK

Electricity will play an increasingly important role in energy systems of the future, both in sustainable generation, smart distribution, and **smart end-use consumption**

Source: Energy Technology Perspectives 2014 - Harnessing Electricity's Potential.

VARIABLE SUPPLY

Time

Sources: de Joode, 2014, NEV, 2015 Visie 2030, Tennet

CHALLENGES FOR ELECTRIFICATION

Electrochemical conversions are currently economically not feasible:

Primary reason: High reactor CAPEX (expensive electrodes, you scale based on surface and not on volume, a lot of reactors are needed)

Important parameters:

- Electricity price
- On-stream time
- CO2 price has limited impact

CONCLUSIONS

New trends in olefin production:

- 1. the dominant technology for at least the coming 30 years
- 2. From a CO_2 point of view: New trends in olefin production lowest emissions per ton HVC
- 3. New innovations will allow to decrease emissions even further and increase selectivity

Alternative Technologies

- 1. Propane dehydrogenation: many new projects
- 2. Catalytic cracking of naphtha bright future
- 3. OCM: reactor technology and separation are challenging
- 4. Electrification not economically viable

Thank you ... for your attention !

New trends in olefin production

EEPC 2017 ETHYLENE SEMINAR

Dresden - Germany Maritim Hotel & Internationales Congress Center

Wednesday 25 > Friday 27 October 2017

ACKNOWLEDGEMENT

Prof. Philip de Smedt

