SDM-17

MPROOF

FACULTY OF ENGINEERING AND ARCHITECTURE

LABORATORY FOR CHEMICAL TECHNOLOGY

IMPROOF: Integrated model guided process optimization of steam cracking furnaces

GENT

<u>Marko R. Djokic¹</u>, Kevin M. Van Geem¹, Geraldine J. Heynderickx¹, Stijn Dekeukeleire¹, Stijn Vangaever¹, Jens Dedeyne¹, Laurien Vandewalle¹, Frederique Battin-Leclerc², Georgios Bellos³, Wim Buysschaert⁴, Benedicte Cuenot⁵, Tiziano Faravelli⁶, Michael Henneke⁷, Dietlinde Jakobi⁸, Philippe Lenain⁹, Andres Munoz¹⁰, John Olver¹¹, Marco Van Goethem¹², and Peter Oud¹²

IMPROC

CRACKER: HEART OF A PETROCHEMICAL PLANT

Commercially important petrochemical process

The main source of ethylene, propylene and other valuable hydrocarbons (i.e. olefins and aromatics)

IMPROOF IS ALL ABOUT

Renewable fuel characterization

- experimental activity
- kinetic mechanisms

Advanced 3D modeling

- CFD RANS/LES
- Reactor optimization
- pilot plant simulation

Innovative Furnace System developments and integration

- oxy-fuel combustion

- emissivity coating

- coke formation

- 3D reactor testing

Eloor hurner

- Energy efficiency
- Greenhouse gases
- NO_X

- Introduction
- Concept and Objectives
- High Emissivity Coatings
- 3D Reactor Technology
- Conclusions

- Introduction
- Concept and Objectives
- High Emissivity Coatings
- 3D Reactor Technology
- Conclusions

CONCEPT AND OBJECTIVES

- 1. Novel combustion technology using alternative fuels and oxy-fuel combustion
- 2. Demonstrate the individual impact of novel emissive, reactor and refractory materials and designs at pilot scale (TRL5)
- 3. Demonstrate the power of advanced process simulation (high performance computing and CFD) for furnace design and optimization
- 4. Demonstrate the technical economic and environmental sustainability of the IMPROOF furnace at TRL6
- 5. Coke formation reduction and real time optimization

- Introduction
- Concept and Objectives
- High Emissivity Coatings
- 3D Reactor Technology
- Conclusions

EMISSIVITY: RADIATIVE HEAT TRANSFER

Three fundamental mechanisms of heat transfer:

• Conduction

$$E_{bb}(T) = \int_{\lambda=0}^{\lambda=\infty} L(\lambda, T) d\lambda = \varepsilon(T) \sigma T^4$$

With σ the Stefan-Boltzmann constant $\varepsilon(T)$ the total hemispherical emissivity

Over 90 % of the heat transfer from the steam cracking furnace to the reactor coils arises from radiation

Heynderickx, G.J. and M. Nozawa, *Banded gas and non-gray surface radiation models for high-emissivity coatings*. AIChE journal, 2005.

In reality no object behaves as a perfect blackbody

The deviation of the spectral radiance from a perfect blackbody is given by the emissivity:

WHY EMISSIVITY COATINGS?

- To increase the thermal efficiency of a furnace, the use of <u>high-emissivity</u>
 <u>coatings</u> on reactor tubes and/or furnace walls has been suggested
- Applying a high-emissivity coating on a reactor tube <u>decreases</u> the amount of reflected energy and <u>increases</u> the amount of absorbed (and possibly re-radiated) energy
- Applying a high-emissivity coating on a furnace wall increases the amount of energy absorbed by the furnace wall which is transferred to reactor tubes through re-radiation
- An increase in the thermal efficiency of a furnace can be translated into an increase of <u>throughput</u> or a <u>decrease in fuel gas</u> input

EMISSIVITY: EXPERIMENTAL SET-UP

Honnerova et al., *New experimental device for high-temperature normal spectral emissivity measurements of coatings.* Measurement Science and Technology, 2014.

EMISSIVITY: SAMPLES

Metal samples

(un)coated 304 stainless steel

Ceramic samples

(un)coated Alamo®

- Two novel high-emissivity coatings by Emisshield designed for radiant walls/floor of furnace and process coils/tubes
- Reference 304 SS and Alamo[®] refractory bricks were measured

EMISSIVITY: CERAMIC SAMPLES

Emisshield Coated Alamo®

- Temperature independent in 700 – 850 °C
- Allows to measure at lower temperatures

Coated vs. Uncoated Alamo®

- Big difference in the sub 5 µm region
- Coating the <u>refractory wall</u> can significantly <u>improve</u> the thermal efficiency of a furnace
- <u>Decrease</u> of spectral emissivity is observed for wavelengths shorter than 5 μm.
- Method needs further **improvement** to evaluate this.

EMISSIVITY: METAL SAMPLES

Coated vs. Uncoated 304 SS

- <u>Clear difference</u> exists between the samples throughout the entire range of wavelengths
- Once the 304 SS material is oxidized, spectral emissivity will increase and close the gap
- Emissivity of 304 SS is slightly higher than in literature – due to <u>roughness</u>

Metal Coating vs. Ceramic Coating

- Two coatings designed for metal and ceramics
- Although different in composition they have <u>very similar</u> emissivity

• <u>Decrease</u> of spectral emissivity is observed for wavelengths shorter than 5 μ m.

- Introduction
- Concept and Objectives
- High Emissivity Coatings
- 3D Reactor Technology
- Conclusions

COKE FORMATION

Deposition of a carbon layer on the reactor surface

Thermal efficiency

Product selectivity

[Muñoz, 2013]

Estimated annual cost to industry: \$ 2 billion

Optimization by

- Feed additives
- Metallurgy & surface technology
- 3D reactor technology

L. Benum, "Achieving Longer Furnace Runs at NOVA Chemicals," in AIChE Spring National Meeting, 14th Annual Ethylene Producers' Conference, New Orleans, Louisiana, 2002.

3D REACTOR TECHNOLOGY

Improve the reactor by decreasing $T_{gas/coke}$

$$Q = U \cdot A \cdot \left(T_{gas/coke} - T_{bulk} \right)$$

Increase tube area (A)

finned tubes

Increase heat transfer coefficient (U) ribbed tubes

SCOPC*

M. Zhu, "Large eddy simulation of thermal cracking in petroleum industry," 2015.

(3D) SIMULATION ARE NEEDED

NEED VALIDATION!!!

EXPERIMENTS

Liquid Crystal Thermography

Measuring velocity and 3D flow profile

Measuring tube wall temperature and heat transfer

Both experiments were performed at the von Karman Institute for Fluid Dynamics

LES vs RANS – RIBBED DUCT (Re=40 000)

LES SIMULATIONS

MILISECOND PROPANE CRACKER SIMULATION

33 g/s propane

0.326 kg/kg

903.7 K

80.15 % (± 0.05%)

- Feedstock
- Propane conversion
- Steam dilution
- CIT
- COP 170 kPa

Different geometries simulated

- Same reactor volume
- Same axial length
- Same minimal wall thickness

PRODUCT SELECTIVITIES

Minor effect on *total* olefin selectivity

Radial mixing effects cannot be predicted based on 1D simulations only

NON-UNIFORM COKE LAYER GROWTH

INCREASED HEAT INPUT

Heat input to the reactor is updated after each mesh update, to keep the propane conversion constant: **more coke => more heating.**

PRESSURE DROP

Slower increase for c-rib compared to bare and finned geometry

TUBE METAL TEMPERATURE

TMT increases at the **same rate** for all geometries, but **absolute max. TMT is lower** for 3D geometries

- Introduction
- Concept and Objectives
- High Emissivity Coatings
- 3D Reactor Technology
- Conclusions

CONCLUSIONS

- IMPROOF aims at <u>improving</u> the energy efficiency, at the same time <u>reducing</u> the greenhouse and air-pollution emissions
- The **high-emissivity** coatings significantly **increase** the spectral normal emissivity
 - Most of the profit will come from coating the refractory wall
 - Further investigation of the <u>sub 5 µm</u> region and study on the <u>effective directional</u>
 <u>emissivity</u>
 - Selection of the <u>best</u> out of 5 different coating for <u>wall</u> and <u>reactor</u> and benchmarking their performance in the pilot plant cracker at UGent
- Application of novel **3D reactor designs** can lead to:
 - ✓ more uniform heat transfer
 - ✓ increased run lengths
 - ✓ longer lifetime of the furnace

Acknowledgment

- The work leading to this invention has received funding from the European Union Horizon H2020 Programme (H2020-SPIRE-04-2016) under grant agreement n°723706.
- My colleagues Jens Dedeyne, Stijn Vangaever, Laurien Vandewalle and David Van Cauwenberge

Thank you for your attention!

