Exploring the reactivity of *n*-C₄-C₆ alcohols: from JSR and RCM experiments to operating regimes in a HCCI engine

M. Pelucchi¹, S. Namysl², M. Bissoli¹, K.P. Somers³,

F. Battin-Leclerc², H.J. Curran³, T. Faravelli¹

¹ Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Italy ² CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France ³Combustion Chemistry Center, National University of Ireland, Galway, Ireland

1. New Ignition Delay Time data for C₂-C₅ linear alcohols

NUIG Rapid Compression Machine (T=700-925 K, p=10-30 bar)

- **2.** New JSR data for C₄-C₆ linear alcohols CNRS Jet Stirred Reactor (T=500-1100 K, p=1.06 bar)
- 3. Update and extension of the POLIMI kinetic model for alcohols LT combustion
- **4. Evaluation of operability maps in HCCI engine** *n*-butanol, *n*-pentanol
- 5. Relevant pathways underlying the auto-ignition phenomena

"This project has received funding from the EU's Horizon 2020 research and innovation programme under grant agreement N° 723706".

Introduction and Motivations

New Fuel Requirements

- Compatible with existing infrastructures (engines, distribution etc.): ignition, miscibility, flame speed, viscosity, boiling point, corrosive potential etc.
- Cleaner
- Sustainable production

Fuel	LHV (MJ/L)	RON	MON	CN
Gasoline	~30-33	88-98	80-88	n.d.
Diesel	Diesel ~35		n.d.	40-55
Ethanol	thanol 21.4		90	n.d.
n-butanol	-butanol 26.9		85	12
n-pentanol	-pentanol 28.5		74	20
n-hexanol	29.3	56	46	24

New FuelsToday (% v/v)Ethanol:5-85% in Gasoline

Tested

n-butanol: 13-26% in Gasoline up to 24% in Diesel *n*-pentanol: 10-30% in Diesel

Trends

Increasing Biofuel content Co-Design of Fuels and Engines

Sarathy et al. (Prog. Ener. Combust. Sci., 2014) and Kalghatgi (Int. J. Engine Res., 2014)

Alcohols show promising physical and chemical properties!

Ignition Delay Time Measurements in RCM: *n*-butanol and *n*-pentanol

Rapid Compression Machine

Fuel/air, Φ =1.0, mole %

<i>n</i> -butanol								
Mixture	Fuel	02	N ₂	Ar	CO ₂	P[bar]		
1-C ₄	3.38	20.29	68.70	7.63	0.00	30		
2-C ₄	3.38	20.28	15.26	61.09	0.00	10		
3-C ₄	3.39	20.36	53.61	0.00	22.63	30		
<i>n</i> -pentanol								
1-C ₅	2.72	20.43	76.85	0.00	0.00	10		
2-C ₄	2.72	20.43	38.42	38.42	0.00	10		

Pelucchi et al. SAE Int. J. Engine, 2017

Heufer et al. Proc Combust Inst, 2013

Species Measurements in JSR: n-butanol and n-pentanol

0.5% fuel/O₂/He mixtures (*n*-butanol, *n*-pentanol); Φ =0.5, 1.0, 2.0; p=1.06 bar; τ =2 s.

POLIMI Kinetic Mechanism: alcohols module and recent updates

Kinetic model of *n*-butanol and *n*-pentanol LT combustion

Low Temperature Oxidation Pathways

G4 BDE @ 298 K

POLITECNICO MILANO 1863

Smartcats COST Meeting, Prague, 25th October 2017.

Kinetic model of *n*-butanol and *n*-pentanol LT combustion

POLITECNICO MILANO 1863

Smartcats COST Meeting, Prague, 25th October 2017.

Kinetic model of *n*-butanol and *n*-pentanol: validation, ST / RCM data

Kinetic model of *n*-butanol and *n*-pentanol: validation, JSR data

POLITECNICO MILANO 1863

Smartcats COST Meeting, Prague, 25th October 2017.

New Engine Technologies: HCCI

- HCCI: Homogeneous Charge Compression Ignition
- RCCI: Reactivity Controlled Compression Ignition
- PCI: Premixed Compression Ignition
- GCI: Gasoline Compression Ignition

OpenSMOKE++ framework

Cuoci et al. Comp. Phys. Comm., 2015

- Ideal reactors
- RCM
- Laminar Flames
- Droplets
- Surface Reactor
- •

http://www.opensmoke.polimi.it/

Multi-zone model of HCCI Engine: OpenSMOKE++ ICE Model

✓ <u>General structure</u>

- Multi-Zone "onion-like" structure
- Mixture threated as an ideal gas
- Velocity field not solved
- From IVC to EVO
- ✓ <u>Zone structure</u>
 - Well-mixed reactors, V(t), uniform P
 - Transport among zones (laminar and turbulent)
 - Crevices: fixed-volume variable-mass zone
- ✓ <u>Sub-models</u>
 - Wall heat transfer
 - Turbulence

- Non-reactive CFD used to define **3 engine-specific parameters (Cu_z, C_x, Cu_w)**
- Residual Burned Gases (RBG): cycle-to-cycle predictions
- Tools for kinetic analyses

Validation and further model details

Bissoli et al. SAE Int. J. Engines, 2013; Appl. Energ., 2016; Energy Fuels, 2017

Multi-zone model of HCCI Engine: Operability Maps

2-D operative maps identify stable operability regions

i.e. set of different λ -EGR conditions satisfying the constraints below:

Limits

Partial Burn: η_{сомв} ≥ 80%

$$\eta_{comb} = \frac{\int HRR}{\Delta H_{comb}}$$

- Knock/Ringing: **PRR ≤ 6 [bar/deg]**
- Misfire: CoV Indicated Mean Effective Pressure ≤ 60%

$$IMEP = \frac{\int p \, dV}{V_{disp}} \qquad CoV \ IMEP = \frac{\sigma_{IMEP}}{IMEP}$$

Ricardo E6 engine Brunel University^[2]

Displacement	504 cm ³	CR	11.5
Bore	76.2 mm	Speed	1500 rpm
Stroke	111.1 mm	IVC	137 °ATDC
Rod Length	241.3 mm	EVO	144 °BTDC

[1] Bissoli et al. Energy Fuels, 2017; [2] Oakley, PhD Thesis, 2001

Model configuration15 zones (14+crevice)50 cycles (EGR effects)>150 λ-EGR combinationsfor each map

General Trends

- Ethanol and TRF/butanol extend the operability maps towards ringing region

 (highly anti-knocking components: toluene, butanol)
- n-butanol and n-pentanol show the highest flexibility to load and EGR
- TRF/butanol extends partial burn limits compared to ethanol and PRFs

TRF/butanol (RON=95, MON=87): *iso*-octane/*n*-heptane/toluene/*n*-butanol (41.2/8.1/22.4/28.3 mole%)

Agbro et al. Fuel, 2017

Multi-zone model of HCCI Engine: Operability Maps

(OH, **HO**₂)

Alkane moiety enhances ignition at LT

Sensitivity Analysis to T, Inner Zone

Alcohol moiety inhibits ignition at LT

O₂+radicals=HO₂+aldehyde/enol

 \checkmark Da Silva et al. and Zador et al. provide basis: <u>rate rule is needed</u>!

Multi-zone model of HCCI Engine: OpenSMOKE++ ICE Model

Multi-zone model of HCCI Engine: OpenSMOKE++ ICE Model

CAD ~ -5, p=18.9 atm, T=1034 K

Mostly C_0 - C_2 and HO_2 chemistry

- New Experimental Measurements in RCM and JSR extend the scarce experimental data on alcohols oxidation at conditions relevant for real systems
- POLIMI Kinetic Mechanism has been extended to describe the low temperature oxidation of alcohols (C₄-C₆) (with a new core mechanism!)
- Coupling of the POLIMI HCCI (ICE) Model allows to qualitatively explore the potential of alcohols as fuels or additives in HCCI Engine, by means of detailed kinetics
- Butanol and pentanol extend the operability region allowing lower loads (i.e. reduce the partial burn region) compared to TRF/PRF mixtures and ethanol
- Relevant kinetic pathways still deserve an accurate revision, due to their strong impact on auto-ignition in real systems

Thank you!