Using BioFuel gas under O2 enriched flue gases in steam crackers

Gilles Theis
Jason McAdams
Ali Gueniche

May, 2018
Important Notice

The information contained in these materials is for informational purposes only and is provided “AS IS”, without warranties of any kind. Your use of the information contained herein is at your sole risk. We expressly disclaim any express or implied representations, warranties or guaranties, including without limitation, the implied warranties of merchantability and fitness for a particular purpose. We will have absolutely no liability (whether direct, indirect or consequential) in connection with these materials (and/or the information contained therein) including without limitation, any liability for damage to person or property. We also reserve the right to make subsequent changes to the materials without prior notice. For purposes of this notification, “We” includes John Zink Company LLC and its affiliates and their respective employees, partners, principles, agents and representatives, and any third-party providers or sources of information or data.

For information on patents and trademarks, see johnzinkhamworthy.com/legal-notices.
Outline

► Introduction about IMPROOF EU project
► JZHC deliverables
► Testing setup at JZHC test facility
► Testing Results
► Conclusion
Improof project funded by EU:
Introduction

Improof Project partners
John Zink Hamworthy Combustion deliverables

- Demonstrate the combustion performance of Bio-Fuel gases and their influence on combustion behaviour using ULN burners under ambient air conditions and oxygen enriched flue gases.
JZHC deliverables

COOLStar™ Ultra Low NOx Burner
Furnace 14 at JZHC Tulsa test center

Testing setup at JZHC test facility

F14 test center

2 COOLstar TM burners installed
Testing setup at JZHC test facility

CO\textsubscript{2} Storage trucks

Test Furnace F14

Steam Boiler truck
Testing results

Air flow stream composition: Ambient

► Ambient air testing: 21% O2, 79% N2

► Test fuel 1: 100% Tulsa Natural gas (TNG fuel)
► Test fuel 2: 10 vol% CO2 in 90 vol% Natural gas
► Test fuel 2: 20 vol% CO2 in 80 vol% Natural gas
► Test fuel 2: 30 vol% CO2 in 70 vol% Natural gas
► Test fuel 3: 40 vol% CO2 in 60 vol% Natural gas
Testing results: Ambient air

Absolute Heat Flux, ambient air testing

Relative Heat Flux, ambient air testing
Testing results: NOx emissions

Comparison % of NOx emissions- Ambient air and Oxyfiring vs different CO2 vol% concentration in natural gas fuel

% CO2 in the natural gas

% of maximum NOx emissions

Ambient NOx in %
Air stream: Oxy-firing 21% O2

- Oxy-firing: 21 vol% Oxygen, 26 vol% CO2 and 53 vol% H2O(g)
 - Test fuel 1: 100% Tulsa Natural gas (TNG fuel)
 - Test fuel 2: 20 vol% CO2 in 80 vol% Natural gas
 - Test fuel 3: 40 vol% CO2 in 60 vol% Natural gas
Testing results: Oxy-firing

Absolute Heat flux, simulated air, 21 vol% O2

Relative Heat flux, simulated air, 21 vol% O2
Testing results

Air stream: Oxy-firing 18%, 21%, and 24% O2

TNG fuel gas for all cases

- Ambient air
- O2 concentration: 21% vol
Testing results: Flux profile

Absolute Heat flux, TNG, 21% O2 concentration

Heat Flux Profile, TNG at 21% O2

Heat Flux Profile, Normalized, TNG at 21% O2

Heat Flux - kW/m²

Furnace Elevation (m)

- ambient TNG
- Oxy 21 O2 - TNG

Heat Flux - Normalized

40% 50% 60% 70% 80% 90% 100%

Furnace Elevation (m)

- ambient TNG
- Oxy 21 O2 - TNG

Absolute Heat flux, TNG, at 21% O2 concentration
Testing results: summary

The test results show that there is no difference in the heat flux profile of the COOLStar™ burner if operated on a same fuel, irrespective if it is operated with ambient combustion air, or under oxyfiring conditions.

A difference is observed between a typical natural gas and biofuel gas, where the CO2 is reducing the heat transferred by the flame, as it is causing a flame temperature reduction.

For most of the cases, the achieved relative heat fluxes of all tested fuels on a same oxidant composition are very similar, which is beneficial for the practical operation of the cracker during fuel changes.
Testing results: NOx emissions

Comparison NOx emissions - Ambient Air and Oxyfiring

% maximum NOx

vol% CO2 in Natural Gas

- Ambient NOx in %
- Oxy NOx, 21% vol O2
Testing results: NOx emissions summary

 ► Considering a Biofuel gas with 40 vol% CO2, NOx measured during oxyfiring showed to be few percent of the emission recorded during ambient air operation.

 ► The NOx measured during testing is caused by Nitrogen contained in the Natural gas. Some ambient air will have leaked into the test furnace, to which amount cannot be quantified, but it is expected to be very low, especially at the burner level. The furnace tightness was tested prior the combustion test.
Conclusion:

► Several tests have been performed to evaluate the performance of the burner if operated on an oxygen enriched flue gas. In addition, simulated biogas was simulated and evaluated.

► With respect to the combustion system only and focusing on the radiation zone, it has shown the furnace temperature and relative flux profiles are comparable. It can be therefore expected that an existing cracking furnace can be operated on both oxygen enriched flue gas and biofuel at the same time.

► The NOx emissions have been reduced by as much as 95%, as hardly no nitrogen is available in the combustion process.
Thank You!