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Introduction to steam cracking

Hydrocarbon feed is cracked at high temperatures to produce light olefins

Reactor side

• 3D reactor technologies

Furnace side

• high emissivity coatings

• oxy-fuel combustion
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Reactor side

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion
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Reactor side

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion
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3D reactor technologies

Coke: deposition of a carbon residue layer on the reactor surface

thermal efficiency ↓

product selectivity ↓

decoking procedures required

Nemesis of the steam cracking process

Optimization by:

- feed additives

- metallurgy & surface technologies

- 3D reactor technologies
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[1] Vandewalle, L. A.; Van Cauwenberge, D. J.; Dedeyne, J. N.; Van Geem, K. M.; Marin, G. B., Dynamic simulation of fouling in steam cracking reactors using

CFD. Chemical Engineering Journal 2017.



3D reactor technologies

𝑄𝑛𝑒𝑡 = 𝑈 𝐴 𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑤𝑎𝑙𝑙 − 𝑇𝑓𝑙𝑢𝑖𝑑

Process intensification?

𝐴 ↑ more reactor material needed

𝑈 ↑ improve heat transfer from metal to process gas

3D reactor technologies

Decrease temperature boundary layer

Increase radial mixing

Increased pressure drop
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[2] Van Cauwenberge, D. J.; Schietekat, C. M.; Floré, J.; Van Geem, K. M.; Marin, G. B., CFD-based design of 3D pyrolysis reactors: RANS vs. LES. Chemical

Engineering Journal 2015.



Steam cracking pilot plant experiments
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Operating conditions:
10 kg/h propane

4 kg/h water

644 °C coil inlet temperature

2 bar coil inlet pressure

0.9 s residence time

Re = 4.2 – 5.4 × 103

85 % conversion

Di: 9 mm Di: 37.4 mm

Experimental program:
Steam treatment

5 cracking cycles (CCs)

decoking after every CC

pre-sulfidation before every 

CC (300 ppmS H2O)



Steam cracking pilot plant CFD

reactive Reynolds-averaged Navier-Stokes CFD simulation

k-omega SST turbulence model

Effect of 3D reactor technologies on a pilot plant scale?
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CFD simulations running…



Reactor side

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion
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Introduction radiative heat transfer
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Solar spectrum as the primary source of renewable energy:

𝐼λ = 𝐼λ0𝑒
−κ𝑠

𝐼λ = 𝐼λ0

• spectrum resembles that of a 5800 K blackbody

• gas phase absorption due to gases in atmosphere

H2O

CO2

absorption band

spectral window

[2] Reference Solar Spectral Irradiance: ASTM G-173. Available at: 〈http://rredc.nrel.gov/solar/spectra/am1.5〉, (accessed 26.02.18).

[3] Reference NIST RADCAL Narrow-Band model developed by W. Grosshandler. Updated version available at: 〈 https://github.com/firemodels/radcal 〉, (accessed 20.02.18).



Spectral directional emissivity

No object behaves as a perfect blackbody  the emissivity is a measure for the 

deviation of the surface irradiance from a perfect blackbody

The most fundamental emissive property is the spectral directional emissivity:

𝜀𝜆,𝜃,𝜑 𝜆, 𝜃, 𝜑, 𝑇 =
𝐼𝜆,𝜃,𝜑(𝜆, 𝜃, 𝜑, 𝑇)

𝐼𝜆
𝐵(𝜆, 𝑇)

depends on:

wavelength, polar coordinates, surface conditions… 
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Experimental emissivity characterization

CNRS-CEMHTI: spectral normal emissivity measurement device

Emisshield coating:

𝜀𝜆,𝑛 𝜆, 𝑇 = 𝜀𝜆,𝜃=0°,𝜑=0° 𝜆, 𝑇 =
൯𝐼𝜆,𝑛(𝜆, 𝑇

൯𝐼𝜆
𝐵(𝜆, 𝑇
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samplereference blackbody

FTIR 1

low wavelengths

FTIR 2

high wavelengths

mirrors

atmosphere:

air

revolving plate

[4] Brodu, E. et al., Reducing the temperature of a C/C composite heat shield for solar probe missions with an optically selective semi-transparent pyrolytic

boron nitride (pBN) coating. Carbon 2015.



Modelling radiation
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Discrete ordinates model

Exponential wide band model to account for gas phase absorption 

𝐼𝑖: spectral intensity

𝐼𝑏,𝑖: blackbody spectral intensity

𝜅𝑖: absorption coefficient
𝛻 ∙ 𝐼𝑖 Ԧ𝑟, Ԧ𝑠 Ԧ𝑠 + 𝜅𝑖𝐼𝑖 Ԧ𝑟, Ԧ𝑠 = 𝜅𝑖𝐼𝑏,𝑖

Band 

number

Lower 

limit (µm)

Upper 

limit (µm)

Gas phase 

absorptivity

Wall

emissivity 

1 0 2.50 0 𝜀𝑤,1

2 2.50 2.84 EWMB 𝜀𝑤,2

3 2.84 4.15 0 𝜀𝑤,3

4 4.15 4.69 EWBM 𝜀𝑤,4

5 4.69 5.48 0 𝜀𝑤,5

6 5.48 7.27 EWBM 𝜀𝑤,6

7 7.27 12.42 0 𝜀𝑤,7

8 12.42 18.92 EWBM 𝜀𝑤,8

9 18.92 150.00 0 𝜀𝑤,9

H2O absorption bands

model accounts for the boundary wall emissivity and the gas phase absorptivity

𝜀𝑤,𝑖 𝑇 =
𝜆𝑙,𝑖
𝜆𝑢,𝑖 𝐼𝜆 (𝜆, 𝑇)𝑑𝜆

𝜆𝑙,𝑖
𝜆𝑢,𝑖 𝐼𝜆

𝐵(𝜆, 𝑇)𝑑𝜆



Steam cracking pilot plant experiments
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Di: 9 mm Di: 37.4 mm

high emissivity coating applied on refractory

Operating conditions:
10 kg/h propane

4 kg/h water

644 °C coil inlet temperature

2 bar coil inlet pressure

0.9 s residence time

Re = 4.2 – 5.4 × 103

85 % conversion

Experimental program:
Steam treatment

5 cracking cycles (CCs)

decoking after every CC

pre-sulfidation before every 

CC (300 ppmS H2O)



Reactor side

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion
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Oxy-fuel combustion

Oxygen is separated from air prior to combustion

Combustion of fuel in the presence of oxygen diluted with recycled flue-gas

 reduce thermal NOx emissions

concentrated CO2 flue gas stream easier captured and stored

Future work & connection to workshop: perform CFD simulations in order to 

reproduce industrial data
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Conclusion
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Conclusion

• 3D reactors offer a way to improve heat transfer from reactor metal to process gas

• High emissivity coatings offer a way to improve energy efficiency of the radiant 

section of a steam cracking furnace
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Future work in the project

• Scale up from pilot scale to industry, a demonstration furnace has been selected

• numerical validation using CFD to confirm the experimental results
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