Computational fluid dynamics-based study of novel

technologies in steam cracking furnaces

Stijn Vangaever, Steffen H. Symoens, Marko R. Djokic, Guy B. Marin , Geraldine J. Heynderickx, Kevin M. Van Geem

Laboratory for Chemical Technology

WORKSHOP COST/IMPROOF, MILANO, 23/04/2018

Introduction to steam cracking

Hydrocarbon feed is cracked at high temperatures to produce light olefins

GHENT UNIVERSITY

Hydrocarbon feed CH_3 H_2C CH₂ CH_3 $CH_3 CH_3$ $H_2C = CH_2$ Commodity

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion

3D reactor technologies

Coke: deposition of a carbon residue layer on the reactor surface thermal efficiency \downarrow product selectivity \downarrow decoking procedures required

 \rightarrow Nemesis of the steam cracking process

Optimization by:

- feed additives _
- metallurgy & surface technologies
- 3D reactor technologies -

3D reactor technologies

$$Q_{net} = U A \left(T_{reactor wall} - T_{fluid} \right)$$

- more reactor material needed $A\uparrow$
- improve heat transfer from metal to process gas $U\uparrow$

3D reactor technologies

Decrease temperature boundary layer Increase radial mixing Increased pressure drop

Steam cracking pilot plant experiments

Operating conditions:

mperature ssure 1e

rogram:

(CCs) ry CC ore every D)

Steam cracking pilot plant CFD

reactive Reynolds-averaged Navier-Stokes CFD simulation k-omega SST turbulence model

Effect of 3D reactor technologies on a pilot plant scale?

CFD simulations running...

3D reactor technologies

Furnace side

High emissivity coatings Oxy-fuel combustion

Introduction radiative heat transfer

Solar spectrum as the primary source of renewable energy:

[2] Reference Solar Spectral Irradiance: ASTM G-173. Available at: (http://rredc.nrel.gov/solar/spectra/am1.5), (accessed 26.02.18). [3] Reference NIST RADCAL Narrow-Band model developed by W. Grosshandler. Updated version available at: (https://github.com/firemodels/radcal), (accessed 20.02.18).

Spectral directional emissivity

No object behaves as a perfect blackbody \rightarrow the emissivity is a measure for the deviation of the surface irradiance from a perfect blackbody

The most fundamental emissive property is the spectral directional emissivity:

$$\varepsilon_{\lambda,\theta,\varphi}(\lambda,\theta,\varphi,T) = \frac{I_{\lambda,\theta,\varphi}(\lambda,\theta,\varphi,T)}{I_{\lambda}^{B}(\lambda,T)}$$

depends on:

wavelength, polar coordinates, surface conditions...

Experimental emissivity characterization

CNRS-CEMHTI: spectral normal emissivity measurement device

[4] Brodu, E. et al., Reducing the temperature of a C/C composite heat shield for solar probe missions with an optically selective semi-transparent pyrolytic boron nitride (pBN) coating. *Carbon* **2015**.

Modelling radiation

Discrete ordinates model

$$\nabla \cdot (I_i(\vec{r}, \vec{s})\vec{s}) + \kappa_i I_i(\vec{r}, \vec{s}) = \kappa_i I_{b,i}$$

Exponential wide band model to account for gas phase absorption

Band number	Lower limit (µm)	Upper limit (µm)	Gas phase absorptivity	Wall emissivity
1	0	2.50	0	$\mathcal{E}_{W,1}$
2	2.50	2.84	EWMB	$\mathcal{E}_{W,2}$
3	2.84	4.15	0	E _{W,3}
4	4.15	4.69	EWBM	$\mathcal{E}_{W,4}$
5	4.69	5.48	0	$\mathcal{E}_{W,5}$
6	5.48	7.27	EWBM	$\mathcal{E}_{W,6}$
7	7.27	12.42	0	$\mathcal{E}_{W,7}$
8	12.42	18.92	EWBM	$\mathcal{E}_{W,8}$
9	18.92	150.00	0	$\mathcal{E}_{W,9}$

H₂O absorption bands

model accounts for the boundary wall emissivity and the gas phase absorptivity

I_i : spectral intensity $I_{b,i}$: blackbody spectral intensity κ_i : absorption coefficient

Steam cracking pilot plant experiments

Operating conditions: 10 kg/h propane 4 kg/h water 644 °C coil inlet temperature 2 bar coil inlet pressure 0.9 s residence time $Re = 4.2 - 5.4 \times 10^3$ 85 % conversion

Experimental program:

Steam treatment 5 cracking cycles (CCs) decoking after every CC pre-sulfidation before every CC (300 ppmS H_2O)

3D reactor technologies

Furnace side

High emissivity coatings

Oxy-fuel combustion

Oxy-fuel combustion

Oxygen is separated from air prior to combustion Combustion of fuel in the presence of oxygen diluted with recycled flue-gas

- \rightarrow reduce thermal NO_x emissions
- \rightarrow concentrated CO₂ flue gas stream easier captured and stored

Future work & connection to workshop: perform CFD simulations in order to reproduce industrial data

Conclusion

Conclusion

- 3D reactors offer a way to improve heat transfer from reactor metal to process gas
- High emissivity coatings offer a way to improve energy efficiency of the radiant section of a steam cracking furnace

Future work in the project

- Scale up from pilot scale to industry, a demonstration furnace has been selected
- numerical validation using CFD to confirm the experimental results

actor metal to process gas efficiency of the radiant

rnace has been selected ntal results

Acknowledgments

The IMPROOF consortium: DOW, CNRS-LRGP, TechnipFMC, CERFACS, POLIMI, CRESS, John Zink, Schmidt & Clemens, Emisshield, AVGI, Ayming Colleagues @ LCT: Jens Dedeyne, Steffen Symoens, Pieter Reyniers, Marko Djokic

This work has received funding from the European Union Horizon 2020 Programme (H2020-SPIRE-04-2016) under grant agreement n°723706

Computational fluid dynamics-based study of novel technologies in steam cracking furnaces Stijn Vangaever, Geraldine J. Heynderickx, Kevin M. Van Geem, Guy B. Marin Laboratory for Chemical Technology

WORKSHOP COST/IMPROOF, MILANO, 23/04/2018

