Computational fluid dynamics-based study of novel technologies in the steam cracking process

Stijn Vangaever, Jens N. Dedeyne, Pieter A. Reyniers, Guy B. Marin, Geraldine J. Heynderickx, Kevin M. Van Geem

Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium

https://www.lct.ugent.be

INTRODUCTION

STEAM CRACKING

- NOVEL TECHNOLOGIES

3D REACTOR DESIGN

Enhanced heat transfer by modifying the reactor shape:

 $Q_{net} = U A \left(T_{reactor wall} - T_{fluid} \right)$

- increase tube surface $A \uparrow$
- increase heat transfer coefficient $U \uparrow$ \leftrightarrow

Increased pressure drop implies

- loss in product selectivity

HIGH EMISSIVITY COATINGS

Enhanced radiative heat transfer by tuning emissive properties Electrical circuit analogy:

 $\frac{(1-\varepsilon_1)}{A_1\varepsilon_1}$

$E_{b,1} \qquad J_1 \qquad J_2 \qquad E_{b,2}$ $\frac{(1-\varepsilon_2)}{A_2\varepsilon_2}$ $\frac{1}{A_1F_{12}}$

OXY-FUEL COMBUSTION

Oxygen is separated from air prior to combustion Combustion of fuel in the presence of oxygen diluted with recycled fluegas

 $CH_4 + 2O_2 + 8N_2 \rightarrow CO_2 + 2H_2O + 8N_2 + \text{HEAT}$

 $CH_4 + 2O_2 + \text{flue gas} \rightarrow CO_2 + 2H_2O + \text{flue gas} + \text{HEAT}$

Reduce thermal NO_x emissions Produced concentrated CO₂ flue gas stream easier captured and stored

COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

Reactive CFD modelling of different reactor designs in an industrial furnace:

Coke formation is the nemesis of the steam cracking process, dynamic simulations necessary:

Exponential wide band CFD modelling (EWBM) to account for non-grey:

- gas phase absorption
- boundary wall emission focus on radiation

Kinetic network required that is suitable for CFD

CONCLUSIONS AND FUTURE RESEARCH

3D reactor technologies outperform bare reactors

- \rightarrow research ongoing to develop new geometries
- \rightarrow experimental validation: pilot plant & cold flow experiments (VKI)

Emissive properties of both coated and uncoated materials typically used in steam cracking furnaces have been determined

- \rightarrow applicable in CFD models
- \rightarrow experimental validation: pilot plant & emissivity measurements

Compare reactive CFD simulations to experiments performed by industrial partner

Define kinetic network based on laboratory scale experiments

Acknowledgements:

The work leading to this invention has received funding from the European Union Horizon H2020 Programme (H2020-SPIRE-04-2016) under grant agreement n°723706. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government – department EWI". The authors would also like to acknowledge the resources provided by STEVIN Supercomputer Infrastructure at Ghent University.

E-mail: Stijn.Vangaever@UGent.be

VSC Users Day, Brussels, 22/05/2018