## **Emission & Energy reduction**

CONSORTIUM

**Energy efficiency** is a crucial factor for today's steam cracking furnaces.

Opposing factors like cost efficiency and a simultaneous **reduction of emissions** of greenhouse gases and NO<sub>x</sub> needs to be controlled.

Innovative technologies will allow:
to increase energy efficiency by at least 20%
to reduce greenhouse gases and NOx / ton ethylene produced by at least 25%
to increase the time on stream by a factor 3

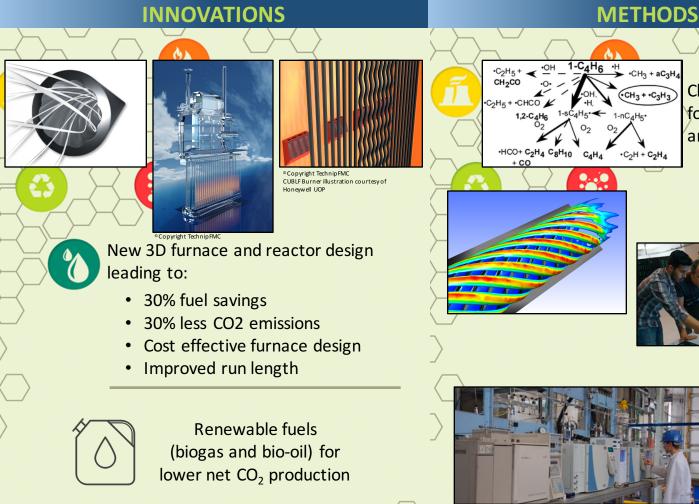
PROJECT DETAILS Duration 48 months EU Grant 6 878 401 €

**IMPROOF** 



Acknowledgment: This project has received funding from the European Union's Horizon 2020 research and innovation programme, under Grant Agreement No 723706




MPROOF

INTEGRATED MODEL GUIDED PROCESS OPTIMIZATION OF STEAM CRACKING FURNACE

improof.cerfacs.fr

## **OBJECTIVE**

Develop new techniques to reduce coke formation, use high emissivity coatings, and include biogas and bio-oil as fuels to drastically improve the energy efficiency of steam cracking furnaces in a cost effective way, while reducing emissions of greenhouse gases and pollutant emissions.



Upscaling and integration

Advanced numerical

simulation

**Chemical kinetics** 

and biofuels

for oxy-combustion



High emissivity coatings for lower fuel consumption

Next generation steam cracking process







