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ENERGY AND COMBUSTION
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ENERGY ON EARTH TODAY  =  
COMBUSTION
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Combustion: more than 85 
percent of the energy produced 



COMBUSTION OVERVIEW
Two important equations:
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ENERGY ON EARTH TODAY  =  
COMBUSTION

ENERGY ON EARTH TOMORROW  =  
COMBUSTION
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IN MOST SCENARIOS, THE ABSOLUTE ENERGY PRODUCTION USING 
COMBUSTION RISES BECAUSE THE INCREASE OF GLOBAL ENERGY 
NEEDS CANNOT BE SATISFIED BY RENEWABLES SOURCES ONLY… 

Whatever the scenario is, need the best 
combustion systems: optimize efficiency, 
minimize pollutants and CO2 emission

COMBUSTION



HDR Laurent Selle - Sept. 23rd 2019 - IMFT

Importance of Combustion
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Total Primary Energy Supply in 2016: 13.7 Gtoe 
(10 Gtoe in 2000)

13.9% renewable 

Hydro (2.5%) 
Bio & waste (9.8%) 
Solar, geo, etc. (1.6%)

4.9% Nuclear 81.2% Fossil fuel 

Coal (27.1%) 
Oil (32%) 
Natural gas (22.1%)

Total for combustion: 91% 
(91.5% in 1990)

1 toe = 41.855 GJ = 11.628 MWh 
https://www.iea.org/statistics



So:

̣We burn a lot 

̣We will keep burning a lot 

̣COMBUSTION SCIENCE MUST ALLOW US 
TO DO THIS WITHOUT WASTING FUEL, 
INCREASING POLLUTION, KILLING PEOPLE 
AND CHANGING THE GLOBAL CLIMATE

!8



The place of simulation

• Of course, everyone knows and agrees that 
we need simulation to design better 
combustion systems 

• The real question is: which type of 
simulation ?  

• I will try to convince you today that this 
should be LES: Large Eddy Simulation
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Which equations ?

AVBP-course!10

The reacting Navier Stokes equations: 
- are well known 
- are exact ! 

THE MAIN PROBLEM REMAINS TURBULENCE !



Do we really know what 
turbulence is ?
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Visualization of vortices in a 
square box of isotropic 
turbulence (no combustion) 
1 billion points
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Fully unsteady 
Three dimensional 
Can we really compute this ?
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Experiment or
DNS

 RANS: averages

LES

Methods for turbulent flows CFD:



A strong difference between RANS and LES 
averaging: 

- In RANS, averaging is performed over time (or 
realizations). By definition, RANS variables do not 
depend on time 

- In LES averaging (filtering) is performed locally over 
space (a small zone around each point). LES variables 
are time-dependent quantities

!14



Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

RANS 

LES
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Same duct computed with RANS and then with LES:

NON REACTING!16



OK, we should not do RANS.  

So, what do we do ? 

LES.... or even DNS ! 

However, taking a simulation code from 
RANS to LES is a big step

Ch. 4 Section 4.8
!17
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Apparently, LES and RANS models for turbulent 
viscosity are not very different:

Ch. 4

RANS, time averaged

LES, space filtered
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Seen from the Fortran lines, the only difference 
between LES and RANS is: turbulent viscosity

Ch. 4  Section 4.7.3

RANS, time averaged

LES, space filtered

Ch. 4  Section 4.7.3
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But... in practice:  
 
1/ What makes a code a good LES code is not only changing 
the expression of the turbulent viscosity (for example 
replacing the k-eps model by the Smagorinski model)  
 
2/ What is needed usually to write a good LES code is to 
restart from zero and build a code which is fully « LES 
compatible » ? 
 
      ->  Why ?

!21



AVBP-course!22

A more cynical view at the true difference between 
codes doing LES, RANS and DNS ?

All applications of interest have large 
Reynolds numbers:

€ 

Re(real) =UL/υ
A large Reynolds number implies a large 
difference between large and small spatial scales 
and therefore a huge number of grid points 
Which we simply dont have



Integral scale

Kolmogorov scale 
=Integral scale/Re^3/4

!23

In terms of resolution this implies that the 
number of  points increases like Re^9/4
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So: we cant resolve all scales associated to large 
Reynolds numbers and real chambers... This was true 
in the 60s and it is still true today... 

Had to find a solution ! 

We use two tricks (we call them ‘models’): 
- turbulence models:    add turbulent viscosity νt 
- dissipative schemes: add numerical viscosity νa 

!25



This is the: 
- viscous term 
- linear term 
- damper of turbulence 
- friend of all PhD students

This is the : 
- non-linear term 
- source of turbulence 
- ennemy of all CFD codes

!26



So... what is turbulent viscosity ? 
It is the easiest solution when the Navier Stokes 
equations are averaged (in RANS) or filtered (in LES) to 
model the non linear terms:

!27



Filter these equations in space (LES)  
or average them in time (RANS):

Replace in momentum:

Ch. 4 Section 4.7.3

The SGS term is modeled using a turbulent viscosity 
 (fully compressible expression here)

!28



USING A TURBULENT VISCOSITY MODEL IS EQUIVALENT TO ADDING 
A (COMPLICATED) TURBULENT VISCOSITY TO THE LAMINAR ONE

Ch. 4 Section 4.7.3
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Very dangerous model: it transforms a non-linear term 
(source of turbulence) into a viscous term (which 
damps turbulence).  

1/ Now this term plays a role similar to laminar 
viscosity 

2/ The political interpretation 

3/ Ultimate reason: this was a good way to get our 
codes to work !

!30



What is artificial viscosity ?: here, the viscous 
term is introduced through the numerical 
scheme

Numerical analysis 101: centered schemes have … problems: 
they generate wiggles as soon as the resolution is not 
sufficient

!31



Introduce artificial viscosity:

Makes the scheme more stable and able to handle gradients 
However, in practice we are not solving:

But:

!32



Upwind schemes are NOT a solution:

Using:

An upwind scheme is like a centered scheme with a 
numerical viscosity equal to 1/2 u Δx

!33



Turbulent flow solvers combine: 
• turbulent  viscosity νt  
• numerical viscosity νa  
to allow the code to run. But at which price ?

€ 

Re(num) =UL/(υ +υ t +υa)

In practice, the Reynolds number seen by the code is : 

which is much smaller than the Reynolds of the flow.

!34

It can even be smaller than the critical Reynolds 
number to have turbulence in this flow. 
==> We are not computing the same flow…: instead of a 
high Re turbulent flow, we are computing a laminar flow
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RANS: turbulent viscosity is very large ==> the Reynolds 
of the code is so small that the flow is steady (ie laminar)

Laminar 
viscosity

The code sees a laminar flow

Turbulent 
viscosity
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RANS: since the flow is so viscous, might as well use 
numerical viscosity too to make it faster and more robust !

Numerical 
viscosity

Upwind schemes

€ 

Re =UL/(υ +υ t +υa) << Re(real)

large CFL 
(implicit 
codes)Temporal

Spatial

Laminar 
viscosity

Turbulent 
viscosity
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CODE DNS: nothing more than 
the laminar viscosity

High-order scheme 
+  
Small CFL

€ 

Re(num) =UL/(υ +υ t +υa) =UL/υ
Numerical 
viscosity

Laminar 
viscosity

Turbulent 
viscosity
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A good LES code: turbulent viscosity reduced and limited numerical 
viscosity ==> Reynolds turbulent smaller than the true one but large enough 
for the flow to be turbulent

Centered schemes

€ 

Re =UL/(υ +υ t +υa) > Re(crit)

Small CFL

Numerical 
viscosity

Laminar 
viscosity

Turbulent 
viscosity
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DANGERS of RANS codes used for LES:

Temporel

Upwind schemes

€ 

Re(num) =UL/(υ +υ t +υa) toosmall

Spatial
Large CFL

Numerical 
viscosity

Laminar 
viscosity

Turbulent 
viscosity
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Classical test: remove the turbulent viscosity

Temporel

Spatial

Numerical 
viscosity

Laminar 
viscosity

Turbulent 
viscosity



CONCLUSION: 
 A good LES needs: 
➢ high order schemes 
➢ small time steps 
(Otherwise it is LESWE: Large Eddy 
Simulation Without Eddy…) 
➢ This will require important CPU time    
➢ THIS IS IMPOSSIBLE IF WE DO NOT USE 
MASSIVELY PARALLEL MACHINES 

Even if we have the CPU power, is it easy to 
do ? Actually NO ! Computing waves 
(vortices or acoustic waves or entropy 
waves) is tough. 

!41



LES: it is all about waves !

LES must propagate: 
- vortices, 
- acoustic waves 
- chemical species.   

This impacts our choices for numerical techniques 

‘Not all LES codes are equal’   (Stanford motto) 

!42



DISPERSION / DISSIPATION

IN THE REAL WORLD: 
A medium is dispersive if the speed at which waves 
propagate depends on their frequency.  
A medium is dissipative if waves are dissipated when they 
propagate. 

Example: Air is not dispersive for sound waves. But it is 
dissipative for high frequency waves. 

!43

IN THE NUMERICAL WORLD: 
Building a numerical technique which respects the dispersive 
and dissipative properties of gases is almost impossible.   
For LES, this is bad news.



Example: convecting a scalar ‘bump’ in homogeneous flow with 
two methods: 
• Lax Wendroff (2nd order) 
• TTGC (3rd/4th order)  

!44



Can we study these questions without 
writing a code ?

Yes !... consider the simplest case of one-dimensional 
convection equation at speed c:

€ 

∂
∂tu + c∂∂xu=0

For this equation, we can derive analytically what the results 
of a given scheme with perfect time advancement would be. 
This equation is neither dispersive nor dissipative by nature: 
all signals are transported at speed c without any modification 

!45
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The exact solution for this wave problem is a 
convection at speed c:

€ 

u(x,t) = u(x−ct, t=0) = v(0) exp2 jπω(x−ct)⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

x

u(x,t) exact

ct

Being able to predict this convection speed is 
crucial for acoustics but also for turbulence (to 
convect vortices or entropy waves).

u(x,t=0)= v(0) exp2 jπωx⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 



Discretize x axis:

Assume that u is a sinusoidal function of  
space (pulsation ω):

j2=-1

What happens in codes ? space is discretized…
Take the simplest finite difference example:

€ 

λ=1/ω
!47
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What does a second order code do ? Suppose we discretize 
this equation in space on a grid of spacing Δx and assume we 
have perfect time advancement:

The numerical solution for this problem is:

For sinusoidal wave propagation: 
Replacing u by v(t) in Eq. (1) leads to:

Or:

(1)
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Comparing the exact and the numerical solution:

€ 

u(x,t) = v(0) exp2 jπω(x−ct)⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

The numerical scheme is dispersive: the speed is not right

Exact: 

Numerical:
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Comparing the speeds:

€ 

u(x,t) = v(0) exp2 jπω(x−ct)⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

shows that the numerical scheme makes the flow 
‘dispersive’; different wavelengths ω are propagated at 
different speeds c(ω ):

Exact: 

Numerical:
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Second order scheme

Exact

(Number of points 
per wavelength)

€ 

c(ω)c

€ 

λ

This is not good news for second-order schemes: they do not 
propagate waves at the right speed as soon as the resolution (ie 
the number of points per wavelength            )  is not very high. λ /Δx

3rd order scheme

Higher order schemes do MUCH better.

6th order



!52

2D Vortex convection

€ 

u= −
Γ
Rc2

ye
−
x2 +y2

2Rc2

€ 

v =
Γ
Rc2

xe
−
x2 +y2

2Rc2

€ 

p− p0 = −
ρΓ2

2Rc2
e
−
x2 +y2

Rc2

€ 

Ux =100m/s Cutting lineSymmetry

Symmetry

Periodicity Periodicityx

y

Convecting vortices is the basic feature of LES

Moureau et al, JCP 2005

•  Γ= 1 m/s2 ; Rc = 19.45*10-3 m ; p0 = 101300 Pa

•  2D structured mesh 30X30 elements.
•  Analytical solution
•  Tested LW (2nd order) and TTGC (3rd order) numerical scheme.
•  Acoustic CFL = 0.7
•  Tested also other codes. CFX 5.7 using a 2nd order centred finite volume 

scheme. Fluent. Openfoam, etc
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Periodic on all sides Vortex leaves

And comes back
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Results after three turn over times
Time step is set by CFL = c Δt/Δx = 0.7

Comparing three schemes: 
• 2nd order Lax Wendroff in  AVBP (code CERFACS) 
• 2nd order CFX (or Fluent or Openfoam) 
• 3rd order TTGC in AVBP (Oxford/CERFACS: Colin 
and Rudgyard, J. Comp. Phys. 162 (2000)). 
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Low pressure in 
vortex center 
(analytical solution)
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CFL = 0.7

Results after ten turn over times
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So high order, explicit schemes are better  
==> well known : they are a MUST for DNS codes 

In the DNS community (which uses structured grids): 
- Spectral schemes (not many in combustion) 
- Pseudo spectral schemes 
- Finite differences: 6th, 8th, 10th order in space 

BUT IT IS NOT SIMPLE TO CONSTRUCT AN EXPLICIT 
HIGH-ORDER SCHEME ON UNSTRUCTURED MESHES ! 
1st order: easy 
2nd order: OK 
3rd order: much more difficult 
4th order: ouch !
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Turbulent premixed flames:
What is our main 

problem ?
• SIZE RATIO S: the size of the domain / the 

flame thickness

• S is systematically small in DNS

• S is large in real atmospheric flames: 10 cm/
0.5mm= 200

 65



And S is huge in two cases:

• High pressure flames (aerospace applications): 
because the flame thickness is small

• Large domains (explosions) because the domain 
size is large

• A 30 cm / 60 bar aeronautical chamber and a 
20 m / 1 bar explosion raise the same modeling 
difficulties

 66



This issue is not limited to 
‘flames’

• For all chemical reactions in turbulent flows, the  
upscaling problem is a major one

• Validations and calibration of simulation tools 
are often performed on small scale systems, at 
atmospheric pressure

• In other words, models which are working in 
small scale, low pressure devices may fail 
miserably in real, large, high pressure systems. 
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INTRODUCTION: EXPLOSIONS
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IGNITION IN BUILDINGS
• When there is a gas leak in a building (for example an offshore platform), the 

consequences can be dramatic
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When turbulent flames become too fast:
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Explosions	are	studied	in	ven4ng	chambers

Dorofeev,	S.B.	Proc.	Combust.	Inst.	(2011)	

Patel,	S.	et	al.		Proc.	Combust.	Inst.	(2002)	

Makarov,	D.	et	al.	Int.	Journal	Hydrogen	Energy.	(2010)	

Kent,	J.	et	al.	5th	Asia-Pacific	Conf.	Combust.	,	Adelaide,	Australia	(2005)
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A.R. Masri et al., Industrial & Engineering Chemistry Research, 2012 
O. Vermorel, P. Quillatre and T. Poinsot and Ph. Ricoux. LES of explosions in venting chamber: a test case for premixed turbulent combustion 
models. Comb. Flame. 2017, 183, 207-224. 

	A	really	good	turbulent	combusDon	model	should	work		
at	all	scales	(Karlovitz/Reynolds)	without	changing	any	parameter...

Ven4ng	chambers	allow	a	varia4on	in	
scales	which	is	unseen	in	other	systems



Sydney	Explosion	Chamber	[1]	

• Box	:		
– 0.05	x	0.05	x	0.25	m3	(small-scale)	
– 0.3	x	0.3	x	1.5	m3	(medium-scale)	

• Fully	filled	with	Fuel/Air	mixture		
• Fuels	:	C3H8	or	CH4	or	H2	
• One	central	square	obstruc4on	
• 3	turbulence	genera4ng	grids	

(removable)	
• Laser	igni4on	at	the	closed	end	

of	the	chamber	in	the	ini4ally	
quiet	mixture

�74
[1]	Masri,	A.R.	Al-Harbi,	A.	Meares,	S.	and	Ibrahim,	S	.“A	Compara4ve	Study	of	Turbulent	Premixed	Flames	Propaga4ng	Past	
Repeated	Obstacles”,	Industrial	&	Engineering	Chemistry	Research	(2012)

0grid 2grids1grid 3grids

Different	configura4ons	studied:

The	ini4al	Sydney	bomb:	25	cm	long

g3

g2

g1



Same setup - three sizes:
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X 1 

X 6 

X 24

SCALE VOLUME

X 1 

X 216 

X 13824

Masri	setup	
University	of	Sydney

Scaled-up	reproducDon	
of	Masri	setup	(x24)	-	

6,1m	
Experiments	by	GEXCON

Scaled-up	reproducDon	
of	Masri	setup	(x6)	-	

1,5m	
Experiments	by	GEXCON
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Maximum	
overpressure

Comparison	with	experimental	
data:

• Flame	structure	
• Flame	posi4on	
• Maximum	overpressure	
• Influence	of	adding/removing	

grids	

• Influence	of	fuel

Experimental	images	of	flame	propaga4on	[2]:

[2]	Gubba,	S.R.	et	al.,	Combust.	Sci.	Tech.	(2008).

Complex	problem	mixing:

• Igni4on	
• Laminar	phase	propaga4on	
• Transi4on	to	turbulence	
• Turbulent	propaga4on	
• Relaminarisa4on

8ms 10ms 11ms 12ms11,5ms
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Results	–	Small	Scale	Chamber	
Flame	Propaga4on

• Long	laminar	phase	controls	the	flame	shape	and	speed	before	it	
touches	the	obstacles	

• Fast	accelera4on	when	flame	becomes	turbulent	
• Acous4c	oscilla4ons	at	the	end	of	combus4on



�78

O
ve
rp
re
ss
ur
e	
[m

ba
r]

• Over-es4ma4on	of	the	maximum	overpressure	reached	by	Charlefe’s	
model.	

• Colin’s	model	gives	the	right	behavior.

Colin	[1] Charle\e	[2]	

Turbulent	combus4on	model	for	small	scale	chamber	simula4ons:	Colin

Time	(ms) Time	(ms)

Results	–	Small	Scale	Chamber	
Choice	of	the	turbulent	combus4on	model

[1]	Colin	et	al,	Physics	of	fluids,	2000	
[2]	Charlefe	et	al,	CombusKon	and	Flame,	2002	
[3]	Masri,	et	al,	Industrial	&	Engineering	Chemistry	Research,	2012

g3

g2

g1

[3]
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Results	–	Small	Scale	
Influence	of	the	number	of	grids	:		

[1]	Masri,	et	al,	Industrial	&	Engineering	Chemistry	Research,	2012

Ta

Ta

—		:	Experiments	mean	[1]	
						:	Experiments	envelope				
-	-		:	LES	-	Colin

1	grid

2	grids

3	grids



Results	–	Small	Scale	
Influence	of	the	fuel	type	:	Response	to	
flame	proper4es	Sl0,	dl0

�80[1]	Masri,	et	al,	Industrial	&	Engineering	Chemistry	Research,	2012

—		:	Experiments	mean	[1]	
						:	Experiments	envelope				
-	-		:	LES	-	Colin

CH4

C3H8

H2
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Masri	setup	
25cm

Scaled-up	reproduc4on	of	Masri	setup	(x6)	
1,5m

x6

Scaling	things	up:	by	6
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Results	–	Medium	Scale	Chamber	
Flame	Propaga4on

LES

Experiments
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Now:	
• Under-esDmaDon	of	the	maximum	overpressure	reached	by	Colin’s	model.	
• Charle\e’s	model	gives	the	right	behavior.

Colin	[1] Charle\e	[2]	

The	turbulent	combusDon	model	which	worked	perfectly	for	small	
scale	does	not	work	for	the	medium	size	chamber	simulaDons…	
Results	even	worse	for	the	large	scale	chamber

Time	(ms) Time	(ms)

O.	Vermorel,	P.	Quillatre	and	T.	Poinsot	and	Ph.	Ricoux.	LES	of	explosions	in	venDng	chamber:	a	test	case	for	premixed	turbulent	
combusDon	models.	Comb.	Flame.	2017,	183,	207-224.	

g3

g2

g1

Results	–	Medium	Scale	Chamber	
Choice	of	the	turbulent	combusDon	model



Implica4ons	for	turbulent	
combus4on	models	

• Going from a volume of 1 to a volume of 24^3= 13000 
shows that a standard (good!) model has problems for 
upscaling 

• Solutions:  
– use more points !  
– use Deep Learning (Lapeyre et al, Comb. Flame 2019)
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USING	MORE	GRID	POINTS	?!

�85

• Grid refinement can replace models ! 

• Adding more points when the scale 
increases is a simple but expensive way of 
solving the problem 

• This requires very large computers. 
Example: the INCITE BG machines



1	billion	cell	LES:
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Premixed turbulent flames:

 89



Closure problem in turbulent premixed 
flames: finding the sub grid surface in LES

!90 [1] Butler, T. D. & O’Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 – 1515.

LES	MESH	POINTS

REAL	FLAME	SURFACE

RESOLVED	FLAME	SURFACE

⌃

S

c = 0 c = 1

sL



Can I guess     knowing    and 
the resolved temperature field c

!91

REAL	FLAME	SURFACE

RESOLVED	FLAME	SURFACE	S

⌃

⌃ S

c = 0 c = 1



Efficiency functions f : 

•… 
• 1989 - Gouldin [5] fractal 
• 2000 - Colin et al. [6] 
• 2002 - Charlette et al. [7] 
• 2011 - Wang et al. [2] 
•… 

!92

Ξ = |∇c|
|∇c|

= f(c, u ′�, . . . )

|∇c| = Ξ|∇c|

Convolutional	neural	network	(CNN)	approach:	

c, |∇c| defined	over	a	subdomain Ω

fCNN(c) = |∇c|
|∇c|

fCNN : ℝΩ ↦ ℝΩ

[5] Gouldin, F. C., Bray, K. N. C., & Chen, J. Y. (1989). 
Chemical closure model for fractal flamelets. Combustion and 
flame, 77(3-4), 241-259.

[6] Colin, O., Ducros, F., Veynante, D., & Poinsot, T. (2000). A 
thickened flame model for large eddy simulations of turbulent 
premixed combustion. Physics of fluids, 12(7), 1843-1863.

[7] Charlette, F., Meneveau, C., & Veynante, D. (2002). A 
power-law flame wrinkling model for LES of premixed 
turbulent combustion Part I: non-dynamic formulation and 
initial tests. Combustion and Flame, 131(1-2), 159-180.

⌃S
⌅ =

⌃

S
=

|rc|
|rc|

TOTAL	FLAME	
SURFACE

RESOLVED	
FLAME	SURFACE
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Numerical setup to train and test 
the CNN for premixed turbulent 
flame: a turbulent Bunsen burner



!94

Similar to: [8] Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F., & Filatyev, S. A. (2007). 
Numerical simulation of a laboratory-scale turbulent slot flame. Proceedings of the combustion institute, 31(1), 
1299-1307.
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The DNS used to train the CNN:

U

u’

2200	K

300	K
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The problem depends on two parameters: the 
mean inlet velocity U and the RMS turbulent velocity u’

U

u’



Simulations
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DNS	/	LES	code:	AVBP	(cerfacs.fr/en/computational-fluid-dynamics-softwares)

Coupled

Name u’	/	SL Inlet	velocity Resolution Turbulent	
combustion	model Comparison

Train	1 1.23 Constant DNS Resolved ø

Train	2 2.47 Constant DNS Resolved ø

Mushroom 1.23 Single	pulse DNS Resolved A	priori

PULSE_DNS 1.23 Sinewave DNS Resolved ø

PULSE_CNN 1.23 Sinewave LES CNN	[9] A	posteriori

PULSE_DYN 1.23 Sinewave LES Dynamic	[2] A	posteriori

Train

Test

TRAINING	THE	NETWORK	ON	DNS

A	PRIORI	TEST	ON	DNS	DATA

A	POSTERIORI	TESTS	ON	LES
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A priori study



Building the dataset
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CNN |∇c|
|∇c|
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nΔ

nΔ

nΔ

DNS Mesh

LES Mesh
Ω Ω

Gaussian	filtering	equivalent	
to	flame	thickening	Δ

Convolutional	neural	network

FΔ(n) = {e− 1
2 ( n

σ )2
if n∈ [1,N ]

0 otherwise



When the CNN learns the dataset:
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When the CNN is used:
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Neural network
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a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

[9] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. 
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
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Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Input

Segmented	image

Architecture	is	adapted	from	a	medical	
image	segmentation	network	[9]



Neural network
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32

c
32

64 64 128 64

128

1	px 1	px

2	px 2	px

4	px 4	px

• Information propagates 14 pixels sideways ≈ maximum size of 
learned structures  
•Network is trained on 163 inputs. Fully convolutional so that the full 

field is explored and used for training



Coupled

Simulations
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Name u’	/	SL Inlet	velocity Resolution Turbulent	
combustion	model Comparison

Train	1 1.23 Constant DNS Resolved ø

Train	2 2.47 Constant DNS Resolved ø

Mushroom 1.23 Single	pulse DNS Resolved A	priori

PULSE_DNS 1.23 Sinewave DNS Resolved ø

PULSE_CNN 1.23 Sinewave LES CNN	[9] A	posteriori

PULSE_DYN 1.23 Sinewave LES Dynamic	[2] A	posteriori

DNS	/	LES	code:	AVBP	(cerfacs.fr/en/computational-fluid-dynamics-softwares)

Train

TestA	PRIORI	TEST	ON	DNS	DATA



A priori tests for a pulsated flame:
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u in
=
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c

c

[10] Lapeyre, C. J., Misdariis, A., Cazard, N., Veynante, D., & Poinsot, T. (2018). Training convolutional neural networks to estimate 
turbulent sub-grid scale reaction rates. arXiv preprint arXiv:1810.03691. Submitted to Combust. Flame

Snapshot	at	highest	flame	surface

|∇c|
|∇c|

A priori tests for a pulsated flame:
|rc|

x	

x	



In terms of computers:
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• The CNN must be integrated in the LES code to compute 
flame wrinkling but the inference time (evaluation of fCNN) 
becomes too long on CPU:  GPUs are much better  
• -> an hybrid architecture CPU/GPU is needed

CPU	:	Navier-Stokes	solver	
(AVBP)

GPU	:	CNN	
(TensorFlow)

c

fCNN(c)



A comment on locality:
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•During training, the CNN learns what wrinkling is, over 
the WHOLE domain 

•During application, the CNN uses only points in a 14 
pixel wide box… but it remembers what he has learnt 
during the training phase



Another comment on generality
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• The CNN has learnt to predict sub grid flame wrinkling 
in this configuration and this one only 

•How general is this knowledge ? 
๏We dont know 
๏Since we do not understand how the CNN works, we 

have no way to determine its range of validity: do we 
need to train the CNN for each flame (in which case 
we would need a DNS for each flame, which we do not 
have) ? 

๏For the moment: we try it on other flames



Conclusion
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Combining: 
• LES is good and will take over other methods 
• But it is expensive and not easy: specific codes must 
be built  

• And subgrid models are still needed: they remain the 
weakest part of the modeling 
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