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1. Introduction

2. Reduction of chemical complexity
* DAC: Dynamic Adaptive Chemistry
e SPARC: Sample-Partitioning Adaptive Reduced Chemistry

3. Reduction of number of reactive environments
e DCC: Dynamic Cell Clustering (or Cell Agglomeration)
* KPP: Kinetic Post Processing

4. Acceleration of ODE solution
e |SAT: In Situ Adaptive Tabulation
* CA: Chemistry Agglomeration
 ANN + Unsupervised Clustering
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Combustion and detailed kinetics

Realistic numerical simulations of

pyrolysis and combustion require not
Real fuels and surrogates only detailed modeling of fluid

need of modeling synergistic effects dynamics, but also a detailed
between the different components characterization of chemical reactions.

The inaccuracy and inadequacy of

Biofuels simple approaches (equilibrium

bioalcohols, biodiesel, green diesel, chemistry or global mechanisms) have

bioethers been clearly demonstrated in recent
years.

This has promoted an increasing effort

to develop and incorporate more

NOx, SOx, PAHs, soot complex reaction mechanisms in the
numerical simulation of combustion
and pyrolysis

Pollutant emissions
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Heterogeneous catalytic reactors

Result of the interplay among phenomena at different scales
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Heterogeneous catalysis and detailed kinetics

New insights into the complexity of
heterogeneous catalysis reveal the demand
for more sophisticated chemistry models and
their implementation into CFD simulations

Modeling the interactions of catalytic surface
and surrounding gas-phase is a very active
field, together with the implementation of
more adequate and complex kinetic models
continue.

Examples
Adsorption and Desorption: Partial Oxidation of CH4 over Rh

Partial Oxidation of CH4 over Noble Metals

Gas-Phase Initiated Coking in Dry Reforming of Methane
Catalytic Reforming of Gasoline

Catalytic Combustion Monoliths

0. Deutschmann, Catalysis Letters, 145, 272-289 (2015)
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Detailed kinetic mechanisms in combustion

Biodiesel + NOx + soot (POLIMI)

biodiesel (LLij [ ]
biodiesel (POLIMI) B -

B “ methyl decancate

. : : )
increasing effort to incorporate

more complex reaction
mechanisms in simulation of
combustion processes

computational cost associated
with such mechanisms is usually

104 — C16 (LLNL) o, (LLNL)
A emm
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. | |
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6

Number of species

Adapted from: T.F. Lu, C.K. Law, Toward accommodating
realistic fuel chemistry in large-scale computations, Progress
in Energy and Combustion Science, 35, p. 192—-215 (2009)
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L very high )

( . R A
need of numerical techniques and
computational tools to:

- efficiently make use of large
kinetic mechanisms
-easily integrate them in new
and/or existing numerical codes
. J
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Detailed kinetic mechanisms in heterogeneous catalysis

Examples of detailed microkinetic mechanisms

120 - for heterogeneous catalysis
Flalinum " The direct computation of surface
0  Rhodium . . .
@ 100F| . reaction rates from ab-initio and
= ©  Palladium
3 *  Nickel DFT, promoted the development
m .
S gt = X of heterogeneous, catalytic
8 mechanisms with increasing level
C . [
S 60 - of detail and complexity
o ~0
g * ©
@
5 40l - Microkinetic models — based on
= X . . . .
é - first-principles (electronic
2 5l = ~ structure) calculations — have
J demonstrated an unparalleled
power in the detailed description

0 5 10 15 20 % 30 of the elementary steps at the
number of surface species
catalyst surface

DETCHEM web-site: https://www.detchem.com/mechanisms
CatalyticFOAM web-site: http://www.catalyticfoam.polimi.it/
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Example: laminar coflow flames

Fuel: CH4/C2H4

Air: 02/N2 (23.2%, 76.8% mass)
Vfuel: 12.52 cm/s

Vair: 10.50 cm/s

Fuel nozzle diameter: 11.1 mm
Chamber diameter: 110 mm

Computational details

Domain: 2D axisymmetric (55 x 200 mm)
Computational grid: ~25,000 cells
Discretization: second order centered

Kinetic mechanism
POLIMI_SOOT_1412:
292 species, ~15,800 reactions

The concentrations of C2H4 and CH4 are
identified by the mixture parameter B:

[ , [ .
ﬁ XCH4
300 1950 0 0.032 e
X 2X
Temperature [K] C6H6 mole fraction cHa T 2&c2H4

Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E., A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4
coflow flames (2013) Combustion and Flame, 160 (5), pp. 870-886
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Example: CPOX of methane over Pt gauze

™S £y MM
T
Homogeneous Chemistry \ N F%-W
. . 1000
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Ranzi et al., PECS 2014 J 5300 026891
(m:{d ) 100 io,ozo
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13 surface species, 82 reactions T;,=600 K -- 0.022
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M. Maestri, A. Cuoci, Coupling CFD with detailed
microkinetic modeling in heterogeneous catalysis,
catalyst temperature [K] Chemical Engineering Science, 96(7), 106-117 (2013)
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Detailed kinetics in CFD: challenges

1. Coupling 0
Hundreds of species resulting in a large =
number of coupled transport equations =)
o
)
- e
~ 100 species l -]
2. Non-linearity ~ 1,000 reactions
The transport equations of species and
energy are very non-linear, because of Inlet mixiuie ICIEAE W
reaction rates expressions (power-law Temperature: e Soot
and exponential) 100 \ -
0.80 o, /

3. Stiffness 000 / I / /
The characteristic times of species
involved in detailed chemistry can differ 2 / /

by several order of magnitudes. - f_ / /

0.00 -
1.E-07 1.E-05 1.E-03 1.E-01

0.40

normlized mass fraction

time [s]
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Chemistry is stiff

Distribution of characteristic times
calculated through the eigenvalue

analysis of the Jacobian matrix
LLNL-NC7 Mechanism ~ loffé)ar'( associated to the system of species
. L 0~ ] )

Species: 654 Batch reactor | and energy equations
Reactions: 2,837 »
_ t=0.001s t=0.0032s t=0.004 s t=0.010s
x
8
(8]
&
5
3
£

108 10° 102 100 >10? 108 10° 102 100 >10? 108 105 102 100 >10? 108 105 102 100 >10?

Characteristic time [s] Characteristic time [s] Characteristic time [s) Characteristic time [s]
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Implicit treatment of chemlstry (1)

> Transport

dy ' (convection + diffusion) APt = AtM™
E =M+ S
I Chemistry
. APl = AtS™
(reactions) v tS
Transport step (At) Chemical step (At)
e
< g—
1, 4._"1 o $ |:> c:'o CJ::) ch::
v 1 v v 1l
<t — «—
—'>l A—-) i 4; C:LD C:I:D CZJD
v | I v I
d dp
— =M — =39
dt dt
Strang, On the construction and comparison of difference schemes. Ren, Pope, Second-order splitting schemes for a class of reactive
SIAM Journal of Numerical Analysis, 5, p. 506-517 (1968) systems. Journal of Computational Physics, 227 p. 8165-8176 (2008)
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Implicit treatment of chemistry (ll)

The chemical step corresponds to the solution
of independent ODE systems with IC (i.e.
Navier-Stokes Egs. independent batch reactors).

(predictor)
¥ Because of non-linearity and stiffness, the use

Transport Egs. fifjfif 1:?1: of implicit ODE solvers is basically mandatory!
(transport step) + 1+ £ +
¥ T However, implicit ODE solvers are
Properties evaluation computationally very expensive and their
V computational cost increases more than
Reactor network ST T linearly with the number of species:
(chemical step) Y RN PR C~n2+3

v

Pressure Eqgn.
Velocity correction
(corrector)

Chemistry Acceleration

to reduce the computational cost of
@ chemical step (without compromising the

accuracy)
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Chemistry Acceleration ()

Reduction Classification problem

(locally) of Reduction of kinetic mechanisms by removal of
chemical species, classification of thermochemical state

complexity and clustering of species

Classification problem

Chemistry ~ Reduction of Group (cluster) together cells having a similar
Acceleration " number of cells thermochemical state to reduce the total
number of ODE systems to be solved

Reduction of
time for solving
the single ODE

systems

Regression & Classification problem
Numerical techniques to replace/improve the
solution of expensive ODE systems.
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Chemistry Acceleration (ll)

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Chemistry Acceleration and Machine Learning

Chemistry Acceleration
R ion of . .
educt!o © Reduction of cells ODE Acceleration
chemistry
DAC SPARC DMZ BBC RNA ISAT CA ANN+UC
S Unsupervis
I ed X X X X X
=
&=
(7))
®| Supervised X X X X
O
c
21 ANN X X
(7]
g
o0
o Other X X X

The flexibility of Machine Learning (ML) models to easily capture nonlinear,
multi-dimensional characteristics in data, makes them very useful in different
aspects of reacting flows.

16
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Adaptive Chemistry: an example (I)

Burner-Stabilized Stagnation Flame Detailed kinetic mechanism:

292 species and ~15,800 reactions
cooling assembly

stagnation plate/sample probe (T;) temperature

473 e ' w1830

active species
10 e '+ oo ' 230

slip wall
slip wall

active reactions
N 20 e ' v 13900
Coflow

Coflow Mixture inlet
inlet

C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati, E. Ranzi,
H. Wang, T. Faravelli, Kinetic modeling of particle size distribution of
soot in a premixed burner-stabilized stagnation ethylene flame
(2015) Combustion and Flame, 162(9), pp. 3356-3369
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Dynamic Adaptive Chemistry (DAC) ()

Smaller kinetics

for most practical
combustion simulation
problems, a relatively
smaller number of
species and reactions
participate in the
processes of pivotal
importance such as
heat release and
emissions formation

Larger kinetics

300 1950

19 A. Cuoci, IMPROOF Workshop, Ghent University 27-28 January 2020

Dynamic Adaptive Chemistry

/ O\

The detailed mechanism is no a priori
reduced locally and information
instantaneously into regarding simulation

accurate sub-mechanisms  conditions is needed.

at each hydrodynamic
time step of the
calculation (“on the fly”)

For comprehensiveness, more species is better

For computational cost, less species is better

Liang L., Stevens J.G., Farrell ).T., A dynamic adaptive chemistry scheme for
reactive flow computations, Proceedings of The Combustion Institute, 32, p.
527-534 (2009)

Liang L., Stevens J.G., Raman S., Farrell J.T., The use of dynamic adaptive
chemistry in combustion simulation of gasoline surrogate fuels, Combustion and
Flame, 156, p. 1493-1502 (2009)
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Dynamic Adaptive Chemlstry (DAC) (ll)

Transport step Chemical step
|11
—A> —A > f; > CZB CZLD &3
431
All the species Detailed mechanism

Dynamic adaptive chemistry
Transport step Chemical reduction Chemical step
> DRG | DRG | DRG :> I T
:|'> DRG | DRG | DRG e I ) TS >
All the species Detailed mechanism — Redicad macharisme
Reduced mechanisms
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Automatlc reductlon of kinetic mechanisms

Target species Strongly linked
species

/ @ Mechanisms
° t reduction
_____________ »

@ Directed Relation
° o Graph
Original mechanism Optimized Reduced mechanism
Species:A,B,C,D,E,F Important Species: A,B, D

Adapted from: T.F. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and
Combustion Science, 35, p. 192—-215 (2009)
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DRG: Directed Relation Graph

If there exist an edge connecting A to B, it means that B
must be kept in order to correctly predict the rate
production of A:

Ry = Z Up,iTi

i

To quantify the direct influence of the species J on the
species A, a normalized contribution of species J to the
A production rate is defined:

[ = ZilvA,iri6]i|
A ZilvA,iril

The greater I;; the

thicker the Edge 1 Ifthe species ] participate to

. reaction i with A
8 =

0 Otherwise

22 A. Cuoci, IMPROOF Workshop, Ghent University 27-28 January 2020 POLITECNICO MILANO 1863



Dynamic Adaptive Chemistry: an example (I)

POLIMI C1C3HT mechanism
Species: 115
Reactions: 2141

Fuel mixture:
34% C,H,, 66% N,
Coflow stream:
21% O,, 79% N,

The transient behavior is induced
by a 20 Hz perturbation in the fuel
velocity profile

A
25
¥ 2
£
(S)
— 15
z
B 10
ﬁ ﬁ > 5 active species active reactions
air air [ [
o >
fuel time 3 76 0 1450
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Dynamic Adaptive Chemistry: an example (ll)

POLIMI kinetic mechanism
Species: 115
Reactions: 2141

Fuel mixture:
34% C,H,, 66% N,
Coflow stream:
21% O,, 79% N,

The transient behavior is induced
by a 20 Hz perturbation in the fuel
velocity profile

A
25

z 20

S

E 15

E 10
. local speed-up . 2 . active species active reactions
T . B W% m L I
1 10 100 0 > 3 76 0 1450
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Computatlonal performances accuracy
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Computational performances: CPU time

285 ~45
= important species
0.04 i 28 speed-up
= 0.005 0.035 | . 275
- 27 | .
0.03 g 14
Ve ry 0.025 + f,;,_ze.s F .
2] T
accurate S 26r ]
0.02 5 Q
M Qo [0
reduction 0015 - E 255
¢ c 135
25 F
0.01
245
0.005
24 +
0 235 1 1 1 1 1 3
0 0.05 0.1 0.5 0.2 0.25 0.3
0.12
17
0.1F 16.5
c=0.02 0.08 161
3
2 a
« 3155 =
Coarse 5 0.06 e 3
. ° @
reduction & st g
0.04 | 5
(=
145
0.02 |
14+
important species 10
0 = speed-up
10 20 30 40 50 60 70 80 13.5 ‘ : ' ! : 9
0 0.05 0.1 0.15 0.2 0.25 0.3

number of species .
time[s]
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Computational performances: speed-up

Dynamic Adaptive Chemistry is able to speed-up the chemical step only
The CPU time associated to the transport step is unaffected

12 ' Additional
I transport step .
I chemical step Operat|0n5 are
- [CIDRG 1 .
h I -dd. operations requl red to

properly setup the
ODE solvers to

(o]
T

% accommodate the
§ 6 reduced
Maximum & mechanisms
theoretical ar
global speedup
10X \2 The time for

™ performing DRG is
complete & =0.005 &=0.01 &=0.02 almost
independent of
the tolerance ¢

0
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Other graph-based reduction methods

* DRG aided sensitivity analysis (DRGASA) (Zheng et al., 2007; Sankaran et al. 2007)
e Path flux analysis (PFA) (Sun et al., 2009)

* DRGEP Directed Relation Graph with Error Propagation (Pepiot et al. 2008)

* DRGEP with sensitivity analysis (DRGEPSA) (Niemeyer et al. 2010)

* Transport flux based DRG (on-the-fly reduction) (Tosatto et al. 2011)

* DRG with expert knowledge (DRGX) (Lu et al. 2011)

» Species-Targeted Sensitivity Analysis (STSA) (Stagni et al., 2015)
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DRGEP: Directed Relation Graph with Error Propagation ()

Graph vertices represent species and directed edges between vertices represent the
coupling of species. The dependence of one species on another is based on a contribution
to overall production or consumption rate.

; =Zi|UA,i7‘i51i|
A max(P,, Cy)

Direct interaction coefficient (DIC)

A Depth First Search (DFS) is performed starting at user-
selected target species (e.g., fuel, oxidizer, important radicals
or pollutants) to find the dependency pathways for all
species relative to the targets.

A path-dependent interaction coefficient (PIC) represents the
error propagation down a certain pathway:

n-1
Lajp = ‘ ‘Isi5i+1
i=1

P. Pepiot, H. Pitsch, An efficient error-propagation-based reduction method for large chemical I AF,pq == I AC + I CD + I DF
kinetic mechanisms (2008), Combustion and Flame 154(1-2), p. 67-81 ’
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DRGEP: Directed Relation Graph with Error Propagation (ll)

Graph vertices represent species and directed edges between vertices represent the
coupling of species. The dependence of one species on another is based on a contribution
to overall production or consumption rate.

; =Zi|UA,i7‘i51i|
A max(P,, Cy)

Direct interaction coefficient (DIC)

A Depth First Search (DFS) is performed starting at user-
selected target species (e.g., fuel, oxidizer, important radicals
or pollutants) to find the dependency pathways for all
species relative to the targets.

A path-dependent interaction coefficient (PIC) represents the
error propagation down a certain pathway:

n-1
Lajp = ‘ ‘Isi5i+1
i=1

P. Pepiot, H. Pitsch, An efficient error-propagation-based reduction method for large chemical I AF,p1 == I AC + I CE + I EF
kinetic mechanisms (2008), Combustion and Flame 154(1-2), p. 67-81 ’
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DRGEP: Directed Relation Graph with Error Propagation (lll)

An overall interaction coefficient (OIC) is then defined as the maximum of all PICs between
the targets and each species of interest:

R,y = max (I <¢€
AJ all paths p( A],p) EP

The removal of species with OICs
below a threshold is considered
negligible to the overall
production/consumption rates of
the target species and therefore
such species are unimportant for
the given conditions and can be
removed from the reaction
mechanism.

Lyrp, = lac + Icp + Ipr Lipp, = lac + Ice + Igr
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DRG vs DRG-EP

More advanced reduction techniques, such as DRGEP, are able to produce more compact
reduced mechanisms

12 Y v
[ ansport step However their
N chemical step )
10} [EENIORG/IORGEP | | cost is larger, thus
the overall impact
8t on the simulation

is not necessarily
positive if
compared to DRG

CPU time [au)
L]

DRGEP

complete e =0.005 e=0.01 e =0.02
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Pre-partltloned Adaptive Chemistry

Dynamic Adaptive Chemistry (DAC)

The computational overhead needed for the on-the-fly reduction of the
mechanism can be significant, strongly reducing the efficiency of DAC

Pre-partitioned Adaptive Chemistry

' y e Alibrary of reduced mechanisms is built in a pre-processing step,

N covering the composition space which is expected to be visited by

- - the reactive systems of interest.
p 4 \ * During the CFD simulation, before carrying out the chemical step,
-« each cell is classified, i.e. the reduced mechanism available in the

library is identified instantaneously and applied

D.A. Schwer, P. Lu, and W.H. Green, Combustion and Flame, 133(4):451-465, 2003.

I. Banerjee and M.G. lerapetritou, Combustion and Flame, 144(3):619-633, 2006.

Y. Liang, S.B. Pope, and P. Pepiot, Combustion and Flame, 162(9), 2015.

L.L.C. Franke, A.K. Chatzopoulos, and S. Rigopoulos, Combustion and Flame, 185:245-260, 2017
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SPARC Sample-Partltlonlng Adaptive Reduced Chemistry

[ detailed simulation + 2D detailed simulation

e Data generation i
m ) 0(5 500 1000 1500 2000 00 500 100 1500 2000 2500
m Temperature Temperature
©
£
o e Clustering based on Local Principal ‘
oT0) . By
= Component Analysis (LPCA)
.E | - Original data Il - PC extraction Il - Rotation IV - Size reduction
©
= . ) |
e Generation of reduced kinetic |
mechanisms via DRG-EP
)
c
© . . )
= e CFD simulation based on reduced
S mechanisms
J
£
)

D’Alessio G., Parente A., Stagni A., Cuoci A., Adaptive chemistry via pre-partitioning of
composition space and mechanism reduction, Combustion and Flame, 211, p. 68-82 (2020)
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SPARC Sample-Partltlonlng Adaptive Reduced Chemistry

Choice of a proper training

e Data generation dataset is the most important
W step
n
=
oY . .. Unsupervised classification
e Clustering based on Local Principal . .
o } It is convenient to reduce the
= Component Analysis (LPCA) number of variables via PCA
e
'©
= 2
e Generation of reduced kinetic Red““::" 'S dgr(‘e oft-line, )50
: : more advanced (expensive
mechanisms via DRG-EP | techniques can be used)
S \
= e CFD simulation based on reduced Fast on-the-fly classification (i.e.
© . identification of the cluster) is
— mechanisms .
=] ) required
£
(V]

D’Alessio G., Parente A., Stagni A., Cuoci A., Adaptive chemistry via pre-partitioning of
composition space and mechanism reduction, Combustion and Flame, 211, p. 68-82 (2020)
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Pr|nC|paI Component Analysis (PCA)

S State variable )

3 T12 ... ZT1Q [ T Y11 Ypl Rows represent

- 2 2 2 '

al T T2 ... T T Y? ... Y observations and columns
X =»o = : correspond to the problem

2

g variables (T, and species

n n n .
Fl Lnl Tn2 --- TnQ _  oYr o Y mass fraction).

Covariance
matrix

S=X'X — S=ALAT

| - Original data Il - PC extraction [l - Rotation IV - Size reduction

PC (Principal Components): eigenvectors of S, i.e. the columns of A
Eigenvalues: i.e. the diagonal of the L matrix, the portion of variance they account for.

Adapted from: A. Parente, Data-driven simulation of combustion problems, Invited Lecture, NC19 Aachen (Germany)
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Unsupervised Clustering via LPCA and k-means

! > —o 1. Initialization

The initial clusters centroids are chosen from a

L 095 | k-means solution. The eigenvector matrix in

’:g each cluster is initialized as the identity matrix.

o}

= 0.9 | !
2. Partition

085 ‘| Each observation is assigned to a cluster by
123 45672839 means of the calculation of a reconstruction
Number of PCs in each cluster
error.
0.4

o 0.3 normalized root mean 3. Update

4 squared error The cluster centroids are updated on the basis

Z 0.2 of the partitioning carried out at step 2.

=

= 0.1
4. Local-PCA

0 - LPCA is performed in each cluster found at
1 2 3 45 6 7 8 9
Number of PCs in each cluster Step 2.
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On-the-fly classification via ANN (l)

Abstract problem
(0D, 1D, etc.)

The on-the-fly classification step has an
important role in the overall approach, since
the non-optimal choice of the mechanism can
compromise the accuracy of the simulation. Y

- Off-line
Unsupervised o _
lassificati classification via

Classification LPCA

[ Dataset generation }

If the chemical mechanism consists of a large
number of species, the classification can be a
difficult task to accomplish since the use of
distances in high-dimensional spaces can
sometimes lead to poor results (Aggarwal,
2001). +

Reduceq mechanism DRGEP
library

A 4

{ CFD simulation }

ANN classifier

\ 4

o ANN classifier
ANN Training (offline training)

PCA classifier

ANN represent a valid alternative to improve
the classification efficiency, as they do not rely
on the use of the metrics in high-dimensional
spaces.

On-the-fly
classification

D’Alessio G., Cuoci A., Parente A., Submitted to Proceedings of the Combustion Institute (2020)
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On-the-fly classification via ANN (lI)

scaling PCA

—)

OO0 QOO
OO0 QOO

main PCs
. )

Scaled variables The ANN solves a multi-class classification problem

|

Important to assess on-the-
fly the quality of the
classification

Thermochemical
variables
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A test case: nC,H,;/CH,/N, laminar flame

Fuel stream Numerical simulation
Composition: 2.47% nC,Hg,
48.7% CH,, 48.7% N, Axisymmetric 2D Mesh

Velocity: 10.12 cm/s (parabolic) Domain: 40 x 100 mm
Cells: ~10,000

Oxidizer stream

Composition: 21% O,, 79% N, Kinetic mechanism
Velocity: 12.32 cm/s (flat) POLIMI_PRF_PAH HT 1412
176 species and 6067 reactions
Geometry
Fuel nozzle diameter: 11 mm CFD code
Thickness: 0.90 mm laminarSMOKE (based on the
Coflow diameter: 50 mm operator splitting approach)
airﬁ t ﬁ
fuel D’Alessio G., Cuoci A., Parente A., Submitted to Proceedings of the Combustion Institute (2020)
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Training dataset

%1073

The training data set must cover adequately the L8
composition space that is expected to be visited vef
during the simulation of the system under
investigation

O mass fraction
ol =
=] = %]

o
@

The samples were generated by means of 1D

counterflow diffusion flames (CFDF), adopting a
wide range of strain rates randomly chosen from =
15 to 1000 1/ T e

o
S

0.2r

%1073

By changing the strain rate, a wide range of 5
composition states can be obtained, from
thermodynamic equilibrium to extinction.

The resulting data set consists of about 220,000
observations, corresponding to 440 different CFDF
flames.

C, Hg mass fraction

0 500 1000 1500 2000
temperature [K]
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Results: accuracy

The ANN used for the classification
consisted of 2 hidden layers with 200 and
400 neurons, respectively, chosen after an
optimization of the hyper-parameters to
achieve a satisfactory accuracy in the class
prediction.

The activation functions chosen for the
hidden layers were both ReLU (Rectified
Linear Unit), with a softmax activation for
the output layer as required in case of
multi-class classification tasks.

Early stopping was adopted in the offline
training to prevent the network
overfitting.

Averaged normalized root mean square
error over time

0.09
APCA-based classifier
e€prgep = 0.005 4NN classifier

& 0.08
=
'z 0.07
=
g
< 0.06

0.05

0 0.01 0.03 0.05 0.07 0.09
Timestep [s]

0.08 ADNN, eprgep = 0.001
[ .DNN, EDRGEP = 0.005
@ 0.06
2 M
[aef
Z 0.04
=
g
= 0.02 H\A———HW

0
0 0.01 0.03 0.05 0.07 0.09
Timestep |s]
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Results CPU time and speed-up

w2

540 : 520 £ The reduction in terms of number of
5} = e . . .
:%39 éprgep = 0.00 500 & species is remarkable (only 25% of species
o = are retained
° 38 1802 )
2 g
g 37 4602 A stronger reduction in the number of
= 36 . 440 = active reactions is evident: less than 10% of
g AMean number of species = L. . .
= 5 #Mean number of reactions - g the original reactions are retained.

0 0.01 0.03 0.05 0.07  0.09 =

Timestep [s]
16
z i 7 éprgep = 0.005 = The computational speed-up of the ANN
g ' 15_;’ adaptive simulation is in a range between 13
;‘ 1.6 " and 15 for the chosen reduction tolerance.
& 15 o The value can vary in time because the
< . .
214 13 < number of species and reactions can also
S e ey change in time depending on the local flame
1.3 12 ;
0 001 003 005 007  0.09 chemistry

Timestep [s]
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Results: comparison with full-chemistry

. x1074 NRMSE: 7.12¢-02

= Det
2] = +10%
9| ==-10%
« Ada

Soot(BinlB) adaptive
- &

<
o

05 1 15 2 25 3
Soot(Bin1B) detailed  x10~*
BIN1B (C,,) is the heaviest
species in the mechanism and it
is a soot precursor

C3H3 C6H6
0.0e+00 0.0001 1.9e-04 0.0e+00 0.002 3.6e-03

h—

A satisfactory level of agreement is observed not only for main species, but also for radicals (such as
propargyl) and heavy species (such as benzene and soot precursors).

POLITECNICO MILANO 1863
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Comparison with conventional DRG/DRGEP

The main advantage of SPARC with respect the conventional DAC approach is in the
reduction of CPU times for additional operations and on-the-fly classification

10 T
I transport step The COSt of
9r N chemical step | additional
bac . .
8 I add. operations | Operat|0n IS NOW
| negligible, since
= ol the possible
0 reduced
E 5 .
S mechanisms are
o B .
c 4 pre-defined

This includes the
time for
performing the
complete DRGEP — SPARC PCA in each cells
and classify the
points via ANN
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Dynamic Cell Clustering (DCC) (I)

Dynamic Cell Clustering (DCC) dynamically groups/clusters regions of the domain that
have similar thermochemical conditions. This reduces the number of detailed chemistry
calculations executed at every time step, as calculations are now executed for a group of
cells (i.e. the cluster), and not for each and every cell.

1. grouping cells into clusters 3. mapping the cluster averaged solution back
using an evolutionary data- to the individual cells while preserving the
clustering algorithm initial temperature and species stratification.

' '

B o e O

2. solving chemical kinetic equations
based on cluster averaged state
variables
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Clustermg of cells

Unsupervised clustering algorithms Binning algorithms
A number of clusters is defined by the user and Uniform Cartesian meshes in the T-P-
a proper algorithm, for example the k-means, composition space are constructed
based on a proper definition of distance, is
adopted to classify the points among the Each cell in the T-P-space including at least one
clusters point becomes a cluster

*# ﬁ* B
e
b

.

k-means, k=20

1

€

No need to define a priori the number of
clusters
Typically a high number of clusters is obtained,
especially in high-D spaces

Need to define a priori the number of clusters
Higher computational cost
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Bounding Box Constrained (BBC) k-means ()

The BBC k-means algorithm aims at a smarter initialization of cluster centers and at a
reduced computational cost of operations involved during each iteration of clustering.

The BBC approach does not require to fix in advance the number of clusters, but it is able
to automatically find an optimal number of cluster.

The starting point is represented by a proper selection of D features and the
normalization of data in the [0,1] box.

Perini F., High-dimensional, unsupervised cell clustering for
computationally efficient engine simulations with detailed 34

combustion chemistry, Fuel 106, p. 344-356 (2013) 4
X9 1
4 ° °
°
e o, ®
o o ) )
o ® o . ® ° o .o o ]
.. .. ° (] 0 @
® ° ° o ® o © 0
D) ° ©
o o
> X1 > Y1
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Bounding Box Constrained (BBC) k-means (ll)

Instead of defining the number of

_ clusters, we define for each feature d
A Example with only d=2

¥, features a grid with uniform step ¢,
Each vertex in the grid represents a
potential cluster center initialization
EZI : ¢ ° ° ) °° ®
Y1
€1
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Bounding Box Constrained (BBC) k-means (ll)

Instead of defining the number of

, clusters, we define for each feature d
Example with only d=2

1 Vs features a grid with uniform step €,
Each vertex in the grid represents a
potential cluster center initialization
; We can now recognize a number of
EZI ° : . ®e ° . active cells, i.e. cells in which we have
I I at least 1 pattern (or feature vector)
Y1
€1
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Bounding Box Constrained (BBC) k-means (ll)

53

Y2

Example with only d=2
features

V1

v

A. Cuoci, IMPROOF Workshop, Ghent University 27-28 January 2020

Instead of defining the number of
clusters, we define for each feature d
a grid with uniform step ¢,

Each vertex in the grid represents a
potential cluster center initialization

We can now recognize a number of
active cells, i.e. cells in which we have
at least 1 pattern (or feature vector)

As a matter of fact, only the vertices of
the active cells, which contain at least
one point image, can become cluster
centers

This idea is the seed for the bounding-
box clustering (BBC)
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Bounding Box Constrained (BBC) k-means (ll)

N Example with only d=2 The BBC algorithm exploits the idea
Y2 features that, if the cluster centers have been
uniformly initialized across the zones
of the space unity hyper-box that are
covered with point images, each of

. them will lay in the surroundings of its
EZI ° . X e initialization value even after the end
o ° : ° of the iterative clustering process.
ce o Each pattern can be assigned to its
° . surrounding cluster centers only, i.e.
T those which define the pattern’s grid-
Y1 like bounding box vertexes at the
e ' initialization.
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Example: catalytic heterogeneous reactor

Partial Oxidation (POX) of methane

OCA rolerance 0.05 OCA tolerance 0,10 BCA folerancs 020 WA tolerance (.40

Tubular
The CH, micro-kinetic model has 21 gas species and g2 o
13 adsorbed species involved in 82 surface =)
reactions g
E Packed bed
_____ = reactor
"""" o 5 10 15 20 25
Speed-up factor [-]
1 E-01
6 cm ——8-- tbular reactor
—b— packed bed
1E-03
E ////
I E-05
E [ »
i o A
’.IE- i
Rebughini S., Cuoci A., Dixon A.G., Maestri M. Cell agglomeration ’
algorithm for coupling microkinetic modeling and steady-state CFD 1.E-07 . - ; .
simulations of catalytic reactors, Computers and Chemical Engineering 97, 0.00 0.10 0.20 0.30 0.40 0.50
p. 175-182 (2017) CA wherance []
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Example: pulsating laminar coflow flame

POLIMI kinetic mechanism
Species: 115
Reactions: 2141

Fuel mixture:
34% C,H,, 66% N,
Coflow stream:
21% O,, 79% N,

number of clusters

2000
The transient behavior is

induced by a 20 Hz perturbation
in the fuel velocity profile

A
25

[N
o

=
w

Velocity [cm/s]

w

N g

fuel

v

time

56
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Total number of cells: 25,000
Number of active cells: 13,000

— eps=0.005
— eps=0.010
eps=0.020

~18%

e W e W g, W e, o WP g ¢

0.15 0.2 0.25
time[s]

0.05 0.1 0.3

Set of features:
T, CH4, 02, OH, CO

Tolerance: € = 0.005 — 0.02
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Computational performances: speed-up

The cost of the chemical step decreases linearly with the number of aggregated cells

The cost of the agglomeration step (identification of similar cells and redistribution of
results) increases with the number of considered features

10

[ chemical step | |

‘ L
[ transport step
agglomeration

CPU time [au]
[6)]

£=0.005 £¢=0.01 &=0.02

Set of features:
T, CH4, 02, OH, CO
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Computational performances: accuracy

Distribution of Temperature STD

3000
[ e=0.05
2500 - -E=001
It is important to measure the internal
2000 - ° . o
2 chemical homogeneity in each
o
S 1500 agglomerated cell
Q
£
3
{ =4
1000
500
x1073
. . 4000 ¢ _ 86
0 0.005 0.01 0.015 0.02 —O&— T CH4 02 o i b
std of normalized temperature 3500 k|~ -G --TCH4 02 OH i
--=&---T CH4 02 OH CO
i Distribution of H20 STD
3000
B -=0.05
[e=0.01 »
200011 8 2500 =
% w
G e
o 2000¢ ‘5 2000 2
2 3 £
o 1500 £ 15004 £
Ee] = -
£
3
= 1000 1000
i
500 500
O ) ) 0 L L 1 1 1 1 1 O
- GEE | WOT | OnS  OOE Ui 001 0015 002 0025 003 0035 004 0045 005
std of normalized H20 accuracy ¢
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lll clusters

@]

original points
clusters
ill clusters

o1 SStd == 005

0.6

© original points
o clusters
08+ © ill clusters

orr gStd == 025

06

09+ 09Ff

O

o]

0.8

05r

normalized CO mass fraction
normalized CO mass fraction

0 0.1 0.2 0.3 04 05 06 07 08 09 1 0.4 0.5 06 07

normalized temperature normalized temperature
Only agglomerated cells which are If the homogeneity condition is not
sufficiently homogeneous are satisfied (red points), 2 options are
considered (green points) considered:
1. The agglomerated cell is rejected
std(y;) < €54 (i.e. no agglomeration is performed)

2. An additional level of refinement

y; is the normalized temperature and (binning) is adopted

a number of selected species
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How to properly choose the D features?

Error on Error on
temperature temperature
=—©—Set 1: T, CH4, 02, OH —8—Set 1: T, CH4, 02, OH
=—8—Set 2: T, CH4, 02, OH, CO =—©—Set 2: T, H20, N2, OH
10.3 1 L i I i3 i i 1 I J 10.3 1 L i I L i i 1 i J
0 001 002 003 004 005 006 007 008 009 0.1 0 001 002 003 004 005 006 007 008 009 0.1
temperature accuracy e temperature accuracy €1

- How to select the proper set of species for the binning algorithm?
- How many species?
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Principal Components (PCs) as binning features ()

T T T
04
90 190%
03r
80 ¢ 180%
T70+ 170% i
=
€ 6ot {60% AR
T 3
F50 150% g o
2 g
é 40 - 140% Q -01r
T an | 1309
g 30 30% o
207 {20%
03 r
107 {10%
-04
0 0% ‘ ‘ ! L ! ! ‘ ‘
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Principal Component Component 1

190%

180%

170%

160%

150%

Component 2

140%

T >1200K 3

120%

Variance Explained (%)

110%

0%

-0.3 -0.2 <01 0 01 0.2 0.3
Principal Component Component 1
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Principal Components (PCs) as binning features (ll)

107 ¢ 10°
=
=,
[ @
§102 :g 10-1 5
=
o
()
—6— Set 1: PC1-PC4 —©— Set 1:
Error on temperature | g oo ) rorrce Error on temperature | "9~ % % PPl
107 : _ _ i Z : : : . o 2 L 1 " L . . . 1 L )
0 001 002 003 004 005 006 007 008 009 01 o 0 001 002 003 004 005 006 007 008 009 0.1
temperature accuracy e temperature accuracy e

The first N Principal Components are automatically chosen, so the only degree of
freedomis N

0 The sensitivity to the number N of PCs is relatively small (if a sufficiently large
number N of PCs is chosen)

An additional CPU cost has to be considered to perform the PCA on-the-fly
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering

63 A. Cuoci, IMPROOF Workshop, Ghent University 27-28 January 2020 POLITECNICO MILANO 1863



Kinetic Post-Processing (KPP) (I)

CFD simulation

temperature

a steady state CFD simulation of the
combustion device is performed using a
global kinetic mechanism, which allows for
the correct prediction of thermal and flow
fields, but which cannot give us
information on pollutant species

pollutant species usually affect only
marginally the main combustion process
and consequently do not influence the
overall temperature and flow field

Post-Processing

—®

nitrogen oxides
“slow” pollutant species

Detailed chemistry

Faravelli T. et al., A new procedure for predicting NOx emissions from
furnaces, Comput. Chem. Eng. 2001, 25 (4-6), 613-618

Skjoth-Rasmussen M. et al., Post-processing of detailed chemical
kinetic mechanisms onto CFD simulations, Comput. Chem. Eng. 2004,
28 (11), 2351-2361

Fichet, V. et al., A reactor network model for predicting NOx emissions
in gas turbines, Fuel 2010, 89 (9), 2202-2210.
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Kinetic post- processmg (KPP) (II)

* The clustering reduces the overall
dimensions of the problem

* According to the clustering, a
complex reactor network is
constructed (thousands of reactors)

!
Simplified kinetic mechanism 3. Network solution

e A detailed kinetic mechanism is used

Ehrhardt K. et al., Modeling of NOx reburning in a pilot scale . N
furnace using detailed reaction kinetics. Combust. Sci. Technol. 0 momentu m/energy tra nsport

1998, 131 (1-6), 131-146 equations to be solved

Falcitelli M. et al., CFD + reactor network analysis: An integrated ° _ . H
methodology for the modeling andoptimization of industrial FU"V coupled solution to ensure h Igh

systems for energy saving and pollution reduction, Appl. Therm. aCcuracy a nd reduced CPU time
Eng. 2002, 22 (8), 971-979
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KPP: Numerical methodology

the numerical procedure combines different
techniques to obtain the final solution, because
the global Newton’s method can be successfully
applied only if the first-guess solution is close to
the real solution.

Time stepping
(ODE)

1. Global Newton’s Method
2. Global ODE (Backward Euler)
Time:stepping (ODE) 3. Direct Substitutions (Local solution)

) Newt
- Yes ewton a. Local Newton’s Method
No

l b. Local ODE system (stiff solver)

- _

Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., Ranzi, E., Buzzi-
Ferraris, G., Numerical modeling of NOx formation in turbulent flames
using a kinetic post-processing technique (2013) Energy and Fuels, 27 (2),
pp. 1104-1122
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Example: low NOx combustor (I)

Axially staged combustor equipped BODY3D Avio code was used to
with 18 injectors based on the Lean perform the CFD simulation with
Premixed Prevaporised technology a global (2 steps) mechanism
| 1 . (LPP) for the main stage and 18 Structured mesh (fitted-body)
PAVIO

conventional pilot injectors (~1M cells) of a 20° sector

KPP: mechanism with 86 species and 1427 reactions

Temperature [800+2500 K] NO [0+2300 ppm] NO, [0+160 ppm]

CO Emissions [ppm]

0 40 80 120 160 200 240
Angular position [deg]

600
252,885 reactors 0 6k f.._.. Y .’\ LA

Different amounts of WL FEE ™ Formation of NO, in §4°° B S I F
NOx formed in the the low g 300 | R ; /b3
conventional (pilot) temperature region § 200 |

and LPP injectors (film cooling) § 100 |

o

Frassoldati A., Cuoci A., Faravelli T., Ranzi E., Colantuoni S., Di Martino P., Cinque G., 0 40 80 120 160 200 240

I -
Combustion Science and Technology 181, p. 483-495 (2009 Angular position [deg)
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Example: low NOx combustor (ll)

A: tubular combustor (56,150 reactors, 4.8M eqs)
B: aircraft combustor (252,885 reactors, 22M eqs)

. Relative importance of the 3
* C: aircraft combustor (290,764 reactors, 25M eqs) e - ImP )
resolution methods in terms
of time.
31.0%
1.00E-01 -
-
€ 1.00£-03 - global ODE 15.5%
e /
S 1.00E-05 B /,—1 .
.g S e DT TTYON l'— .
i -, [ .
S 1.00£-07 / 5 ' 4 direct global global
® : direct ) A i(B) substitutions ODE Newton’s
'Té 1.006-09 . Substitutions i : | method
5 : b
1.00E-11 - global ’\t‘EW;OnS /: P POLIMI NC7 kinetic mechanism
metho 1 ] . .
e . S R 86 species and 1427 reactions
0 50 100 150 200 250 300 350

# iterations

Residuals norm 1 trends, normalized with respect to
their initial value (set equal to 1)

A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, A fully coupled, parallel approach for the post processing of CFD data through reactor network
analysis, Computers and Chemical Engineering, 60, p. 197-212 (2014).

68 A. Cuoci, IMPROOF Workshop, Ghent University 27-28 January 2020 POLITECNICO MILANO 1863



Industrial applications

Turbulent Swirling Nonpremixed Flames

Monaghan et al., Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame, Energy & Fuels, 28(2),
1470-1488 (2014)

Gasoil burners

Cuoci et al., Experimental and Modeling Study of NOx Formation in a Turbulent Gasoil Burner, 30t Combustion Meeting
of the Italian Section of The Combustion Institute, Ischia (2007)

Methane and natural gas burners

Frassoldati et al., Experimental and modelling study of low-NOx industrial burners, 315t Combustion Meeting of the
DANIELI Italian Section of The Combustion Institute, Torino (2008)

| \ . Combustors for aeroengine applications
yAV10

" LAY AV Frassoldati et al., Fluid Dynamics and Detailed Kinetic Modeling of Pollutant Emissions From Lean Combustion Systems,
e ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow (2010)

Technjp Ultra-low NOX furnaces

Van Goethem et al., The design of ultra-low NOx critical furnaces, 10AIChE - 2010 AIChE Spring Meeting

MORE Oxy-combustion furnaces
Cuoci et al., CFD simulation of a turbulent oxy-fuel flame, PTSE2010, Processes and Technologies for a Sustainable

Energy, Ischia (2010)
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Integration of chemical step

(0 m
== S5;(¥))

local ODE ot
system Pr P

\lpi(tn) = l/}Zl

The equations constitute normally a stiff, highly non-linear system, which exhibits a wide
spectrum of characteristic evolution time-scales. The integration of this ODE system
requires specialized solvers, which are in general computer-time intensive.

Since a ODE system has to be solved in each cell at every time level, a direct integration
of the flow and the ODE solvers is very CPU expensive and often impractical.
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Tabulation Methods

Many numerical methods resort then to a pre- U2
calculation of the thermochemistry, which is stored in

the form of a table where the values of the

thermochemical variables at the end of a given time

step are recorded as a function of the thermochemical

state at the beginning of the time step.

Although the thermochemical state is (coarsely)
discretized for the tabulation, the storage
requirements quickly grow as the dimensions of the
compositional space increase.

Memory
[Gb]
The pre-tabulation can be adopted only in a case of a 4 10 0.01 0.00032

very small number of species.

6 10 1 0.048
8 10 100 6.4
10 10 104 800
12 10 106 96000
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Smart Tabulation Methods

Many numerical methods resort then to a pre- U2
calculation of the thermochemistry, which is stored in

the form of a table where the values of the

thermochemical variables at the end of a given time

step are recorded as a function of the thermochemical

state at the beginning of the time step.

Although the thermochemical state is (coarsely)
discretized for the tabulation, the storage
requirements quickly grow as the dimensions of the
compositional space increase.

The pre-tabulation can be adopted only in a case of a
very small number of species.

When the number of species is larger, smart
tabulation methods or a replacement of tables
are needed.

Accessed region
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ISAT: In Situ Adaptive Tabulation

1. In Situ: Tabulation is carried out only with
respect to those points to which the reactive v,
system actually has access (accessed region)

2. Adaptive: A specific algorithm is applied in
order to minimize the points to be tabulated
within the access region, while maintaining
good accuracy

3. Tabulation: The tabulation is carried out
according to a tree structure, in order to ensure
good efficiency in updating the map

Pope S.B., “Computationally efficient implementation of combustion chemistry using in-situ adaptive tabulation”, Combustion Theory and
Modeling, 1 (1997) 41-63

Singer M.A., Pope S.B., Najm H.M., “Operator-splitting with ISAT to model reacting flow with detailed chemistry”, Combustion Theory and
Modeling, 10 (2006) 199-217
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ISAT: Reaction mapping

Reacting map (dR

def Evolution of
R(¥o; ) = ¥(0) reacting map

Reaction-map!)ing A(W,it) &© OR (W,; t) Sensitiyi'Fy. of R Wij(|'.l respect
Jacobian matrix ¥, to the initial conditions
(94
at (Wo; t) = ](R((PO; t))A(qJO; t) System of ordinary differential
) equations (ODEs) with initial
conditions
\ AW, t) =1
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ISAT: Direct Integration (DI)

The direct integration consists in going to solve directly, through an appropriate algorithm
for stiff problems, the differential system starting from an assigned initial condition. At the
same time, however, the calculation of matrix 4 is also carried out:

[ dR
E(‘IIO; t) = S(R(¥y; 1)) N equations
4
oA L
o (Po; £) = J(R(Wo; £))A(Wy; t) N? equations

The ODE system resolution above allows you to have all the information you need to
create a node in the reaction map:

(w,, = R(W,; A)

Y, >4 High computational cost
APy t)
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ISAT: linear interpolation

We have a reaction map with a certain number of nodes, calculated through a DI (index i).

Let's imagine now to have to integrate the stiff system for new initial conditions (query
point):

lllg] neighboring point

lpg query point

sl e wl gy

Direct integration ) )
Difference between linear

'I’Zt = R(q’q; At) = R(’I’([)i] + S'I’g; At) interpolation and DI

def yg* q
) : &L= Wy — Wy
Taylor’s expansion

swi, @ vl —wl=a(w));ar) 6w

v

v~ v a(wihac) (v -l
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ISAT: Ellipsoid of Accuracy (EOA)

The EOA can be estimated from the sensitivity
matrix A once a tolerance € is defined

Retrieve
The query point falls within the EOA and
therefore the linear interpolation is adequate

ax __ q
qlAt ~ lIlAt

Growth
The point is outside of the EOA, but through

the DI we have & < &, addition

The EOA is then expanded to include the new L ’
o, —>

Addition

If neither the retrieved nor the growth
conditions are met, a new node must be
tabUIated through the DI Pope S.B., “Computationally efficient implementation of

combustion chemistry using in-situ adaptive tabulation”,
Combustion Theory and Modeling, 1 (1997) 41-63
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ISAT and Steam reforming Packed Bed Reactor ()

0.121
0.829
0.009
0.002
973 K
14 bar
3.0 m/s

Conventional
Rashig rings

[ tube diameter 0.015 m ]

7-Holes Rings

|_n°cells |__Ring | 7Holes

25M 0.6 M
1.4 M 0.3 M

L total RNV 0.9 M

[ tube diameter 0.04 m ]

Matros Technologies. Inc. http://www.matrostech.com

Simulations performed using a detailed microkinetic mechanism for steam
E: BAU'“SNE reforming (Deutschmann et al., 2011).
It consists of 42 reactions among 7 gas phase and 13 surface species.
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ISAT and Steam reforming Packed Bed Reactor (ll)

NI(s)
0.238—E
0.2
0.16
R\ R\
0.0507-
ISAT DI
| Rings | 7 Holes
Overall Speed-up factor 3.5 2.3
Chemistry Speed-up factor 28 14
Catalytic Cells [%] 36.2 31.9

Bracconi, M., Maestri, M., Cuoci, A., In situ adaptive tabulation for the CFD
simulation of heterogeneous reactors based on operator-splitting algorithm (2017)
AIChE Journal, 63 (1), pp. 95-104, DOI: 10.1002/aic.15441
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ISAT and CPOX of methane ()

The Chemical Company

coifionm

Dot =5 MM

. ’ b =2 mm
h=3mm

* Methane (21 gas + 13 surface OPERATING CONDITIONS

species, 82 reactions) CH, mass fraction 0.1565
*  Number of cells: O, mass fraction 0.1753

0.6682
| nocells 773.15K
BT ~ 0.18 M 1 bar
~ 0.60 M 1m/s
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ISAT and CPOX of methane (ll)

21 gas species and 13 adsorbed species
involved in 82 surface reactions

600 700000 — . v . . ’ . y
'g' 500 | 600000 - -
3 Chemical sub-step
a ~ 500000 - i
S 00| up to ~500 faster o
8 £
:,')- £ 400000 -
o 300 f ©
o) S
@ = 300000 - -
< =
@ 200 f =
z E 200000 - -
L 2
€
2 100t
(&) oF _ wall clock time per chemical step DI 100000 -
chem = \wall clock time per chemical step ISAT
0 1 1 1 1 1 1 1 1 1 1 1 u_
0 0025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 823 873
simulation time [s] temperature [K]
Partial Oxidation (PO) of methane in a heterogeneous B Bl 110° I &a 510 [ &0 1:10*

catalytic tubular reactor

Bracconi, M., Maestri, M., Cuoci, A., In situ adaptive tabulation for the CFD simulation of heterogeneous reactors based on operator-splitting
algorithm (2017) AIChE Journal, 63 (1), pp. 95-104, DOI: 10.1002/aic.15441
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
Clustering
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Chemistry Agglomeration (l)

In Chemistry Agglomeration (CA) the ODE solution of chemical step is not carried out in a
single step, but is split in a sequence of ODE integrations of clusters (groups) of species

Full chemistry Chemistry Agglomeration

Cluster 2

. . . Cluster 1 Cluster 3

F I.I
D
2 EgOd @ " [
3 D 3
14 species 8
¢n+1 = Rpe (™) ¢n+1 = Rac(@1) © Rar(¢3) o Rar(93)

Each subset of species cluster should have no overlap with others, and an almost equal
number of species in each subset is assumed.

Wang J.H., Pan S., Hu X.Y., Adams N.A., A species-clustered splitting scheme for the integration of large-scale chemical kinetics using detailed
mechanisms, Combustion and Flame 205, p. 41-54 (2019)
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Chemistry Agglomeration (ll)

In Chemistry Agglomeration (CA) the ODE solution of chemical step is not carried out in a
single step, but is split in a sequence of ODE integrations of clusters of species

Full chemistry Chemistry Agglomeration

Cluster 2

. . . Cluster 1 Cluster 3

F I.I
D
2 EgOd @ " [
3 D 3
14 species 8
¢n+1 = Rpe (™) ¢n+1 = Rac(@1) © Rar(¢3) o Rar(93)

The cost of implicit ODE solution scales as n? or n3 with the number of species n

C~14*> = ~700 C~3%° +8%° +32° = ~210
Max theoretical

speedup = 3.3
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An example (I)

A|/B|{C|D|E|F A|B|C|D|E]|F A|lE|F|B|C|D
—ky A —k, A —ky A
—ky | ks B —ky | ks B —ks B
ky | ko |~ks | ks C ky | ky ks | ke C —ke C
—ks | ks | ks | D —ky | ks | ke | D —ky | ks D
—ks E —ks E Ky ky |-ks | ks | E
—ks | F —ks | F ks | ke —ks | F
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An example (lII)

01
0.09 ~
0.08 o

g
0.07 - Z 7.

4
§ 0.06 //
- 4 O analytical
% ol ’ Clustering |
8 ——- .
g oo Clustering Il

0.03 Species C
0.02+
0.01

0 . . | | | |
0 1 ) S : : 6
time [s]
0.07
006 wmmmmmTTTITT
/7
l'
alt —— Clustering |
: ! —=-=-Clustering II
g 1
S 0.04
£ |
E 1
> 003l
© 0.03ft
g |
'
0.02
1
0.01}
0 .
0 1 ) ; - . 6
time [s]
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Clustering based on Diffusion Maps

* Given a prescribed number of clusters N, there are many possible clustering
combinations.

e A promising strategy is to cluster all “close” nodes in the graph into a subset,
corresponding to having species with strong interactions in the same cluster.

* Diffusion maps as a non-linear technique for dimensionality reduction, dataset
parameterization and clustering, are a powerful tool reach this goal.

» Different from linear dimensionality reduction methods such as principal component
analysis (PCA), diffusion maps is part of the family of non-linear dimensionality
reduction methods which focus on discovering the underlying manifold that the data
has been sampled from.
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The weight matrix for diffusion maps

max(kj) if x and y both participate in reaction j

Weight matrix W of W(x,y) =
diffusion maps for 0 otherwise
the reaction system

W (x,x) = max(W(x, V)y#x)

AB|C|D|E|F
ky, | 0 [k | O 0 o | A
Weight matrix of O |ks [ks | O | 0|0 |B : .
e It is symmetric and
diffusion mapsforthe |, |4 (& [k | o] 0| C . -
: S I component-wise positive
reaction system
0 0 | ks | ke | ks | ks | D
ol o | 0 |ks |ks | OfE
ol o | o0 |ke| 0|k |F
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Diffusion maps

Using diffusion maps to analyze the graph based on the weight matrix, we can project the
set of species into a diffusion space with at most n dimensions, where the pairwise
distance reveals the connectivity between two species.

01

F O
0.05 |
B
0 (o) Do
5N -0.05 F OA
0.1
015 |
Eo
_02 | | | 1 | |
-0.04  -0.02 0 0.02 0.04 006 s 01

X

The Diffusion Map applied shows that species A, B and C almost collapse on each other in
X, and x, direction, which are the first two diffusion map coordinates
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Chemistry Agglomeratlon for GRI30

0 . :
LA, GRI 30 (without NOX), 36 species
5—.. 000000000000000000000 (XX X ]
IRk
. 10
:o.o EN
. 2
0 5 10 15 20 25 30 35
nz = 696
- O
x107 I o) 10
o © clusters
0 O

kf(o O Cluster| Zero-dimensional auto-ignition of the CH4/air

o C O Cluster Il mixture under adiabatic and constant-volume

o o O Cluster Ill conditions (T = 1200 K, P = 1 bar, ® = 2)

3 Clusters: 14, 4 and 18 species
Theoretical speed-up: 3.6X
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Spar5|ty of mechanisms

non-zero elements [%]

92

100
Lu-88 N Polimi-C1C16TOTNOXx
88 sp. — 387 reacti\\ @ 466 sp.-14,592 react.
P 05T = ~104
10 LINL-Reduced *®-. BL%] = ~10%/NS
160 sp. — 1,540 react. "~ _ LLNL-Detailed
8/ >~
Lu-188 /%/ ». 654 sp. - 2,641 react.
188 sp. — 939 react.” ”\70;\\ LLNL n-heptane
1 Ns - Species: 658
;L;\‘;SMD ¢ 65 t. . Reactions: 2827
°P reac Non-zeros: 3.03%
LLNL-C20 o
7,175 sp. — 31,669 react} *
10 100 1000 10000
Number of species .
. : |
N NN
1000 N W | N
| i
The sparsity of a wide selection of A AL

mechanisms has been assessed and shown
in the figure to the left. -

It is clear that, the larger then kinetics
mechanisms, i.e. the more species, the
greater the sparsity.
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LLNL Methyl-decanoate
Species: 2878

1 Reactions: 8555

Non-zeros: 0.49%
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Observations

* Inreal cases kinetic constants depend on temperature of the mixture. The weight
matrix has also take into account the varying reaction rates with temperature.

e Rather than sampling at a single temperature, many temperature samples are
collected and averaged in order to construct a representative weight matrix.

e The derived clustering by diffusion maps based on such a weight matrix can be
stored and used for other conditions as long as the same mechanism is involved. In
such way, the determination of the weight matrix as well as the clustering procedure
can be treated as a preprocessing step instead of costly on-the-fly clustering.

* Since multiple scales of the absolute reaction rates exist, usually spanning several
orders of magnitude, logarithmic scaling of the reaction rates can be performed to

avoid underestimating the slow reactions.

e Also, normalization in each row of the matrix relative to the diagonal species is
carried out.
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Chemistry Acceleration

Dynamic Adaptive

Local reduction Chemistry (DAC)
of chemical
complexity Sample-Partitioning

Adaptive Reduced
Chemistry (SPARC)

Dynamic Cell Clustering

(DCC) or Cell Dynamic Multi-Zone

. (DMZ) partitioning
Chemistry Reduction of Agglomeration
Acceleration number of cells Bounding-Box Constrained
Reactor Network Analysis (BBC) k-means

& Kinetic Post-Processing

In-Situ Adaptive Tabulation
(ISAT)

Reduction of Chemistry Agglomeration
time for solving (CA)

the single ODE
systems Artificial Neural Network

(ANN) + Unsupervised
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Examples of ANN in combustion

0
\ ’
- - Use Artificial Neural Networks (ANN) to replace the expensive
p) S\ solution of local ODE systems
-

Christo et al. (1996a, 1996b): first example of application of ANN to replace integration of stiff ODE
systems. Limited to 1-step or 3-steps kinetic mechanisms.

Blasco et al. (1998): first example of systematic analysis of generation of ANN for combustion
problems (analysis o scaling, distribution of errors, optimal network topology, etc.)

Blasco et al. (2000): introduction of pre-partitioning of training dataset and generation of multiple
ANNs adapted to chemistry

Sen and Menon (2009): first example of ANN adopted in a LES of a turbulent flame to replace the stiff
ODE solver in the chemical step

Rigopoulos (2013, 2015): combination of ANN with pre-partitioning of training dataset and reduction
of chemical space via RCCE (Rate-Controlled Constrained Equilibrium)
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Application of Artificial Neural Networks (ANN)

1. Generation of data (observations) , ¥107
In order to compute the ANN weights, a set of examples containing * 2D dotalled simulation
input-output data must be generated. The performance of the ANN is g5
very sensitive to the quality of the selected training set q§ 1
:
2. Scaling of generated data 05
Once the training set has been selected and the data have been ;

generated, some preprocessing must be applied to the input and output 0 TEo0 1000 1500 2000
values before they can be fed to the ANN for training. Temperature

3. Selection of ANN topology

The topology or architecture of the ANN can be described in terms of
the number of hidden layers of neurons and the number of neurons in Hidden
each layer. The ANN architecture is to be chosen in a trial-and-error
process to maximize the quality of the fitting of the data set.

4. Training of ANN

In the training phase, the scaled input and output samples of the
generated examples are presented to the ANN and a procedure to
adjust the ANN weights is followed.
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Modeling time evolution of a chemical system via ANNs

Hidden Hidden
input layer layer

Tand
species

The aim of the reactive-species ANN is to predict, given a composition at the beginning of
a time step, the mass fractions of the species at the end of this time step.

97

The time step is fixed for the network

Different ANNs with different time steps are used (for example, At = 1075,
1073 and 1073 s)

Intermediate time steps can be simulated by dividing them into smaller ones
having the above sizes.
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Modeling time evolution of a chemical system via ANNs

layer layer : layer layer

e
&)
W
e
e
KX\
;?‘

SO
Y2 (t) ‘ \\‘ T(t + At)
Tand Tand
species species

The aim of the reactive-species ANN is to predict, given a composition at the beginning of
a time step, the mass fractions of the species at the end of this time step.

* In order to increase the accuracy, multiple ANNs can be considered, dedicated to
single species (or groups of species)

* Obviously, the computational cost is expected to increase (linearly) with the
number of ANNs
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Unsupervised Clustering and ANNSs ()

In a practical flame, for instance, it is ANN, ANN,

possible to identify several zones
(clusters) with burning regimes where
the rate of change of the relevant
variables may differ widely (indeed,
the relevant variables themselves may

also be different) ANN,

Classification problem

One question that immediately arises is how to divide the composition space into parts.
With a multidimensional space where only a small part of it is covered by the data set, it
would be extremely wasteful to employ a regular grid.

It makes more sense to cluster points in such a way that compositions that are close to
each other will be allocated to the same ANN.
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Unsuperwsed Clusterlng and ANNs W)

In principle, any
unsupervised clustering
algorithm can be used

K output variables (a single
ANN for each of them, to
ensure maximum accuracy)
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Unsuperwsed Clustering and ANNSs (lll)

Diffusion Maps can also be used to group different thermo-chemical scalars together
before the ANN training. Diffusion Maps help in this respect by identifying scalars that
share similar nonlinearity’s and groups them together. Such scalar grouping provides
additional benefits in terms of building more compact networks and speeding-up training.

Grouping of
scalars

o<

Ranade, R., Li, G,, Li, S., Echekki, T., An Efficient Machine-Learning Approach for PDF
Tabulation in Turbulent Combustion Closure, Combustion Science and Technology (2019)
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Unsupervised Clustering and ANNs (1V)

=
ﬁ
-

In principle, any unsupervised
clustering algorithm can be used

-
-
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Example Chemlcal Vapor Infiltration (CVI) process

Initial preforms
gas outlet

1

preforms

e

1.4e+03
[ 1200
— 1000

—

— 800

600
400
3.1e+02

cvi prd

electrical
resistance

=
[0}
—
>
o+
©
-
()
Q.
5
|_

gas inlet

. . o
Final disk brakes @ Drempo CH, 98-99%
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Chemical Vapor Infiltration (CVI) process

0 hours

/

Initial carbon

Deposited carbon layer

100 hours

fiber array Residual porosity
Outlet
4
iHeating .
! Preform !
Bottom
o plate
e
Inlet
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Chemical Vapor Infiltration (CVI) process

0 hours 20 hours 100 hours

~ O

Initial carbon

fiber array Deposited carbon layer

Residual porosity

Homogeneous gas phase reactions

CH, — C,species — C.species — Cg, species —— Soot
Heterogeneous surface
reactions

Pyrocarbon C_,
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CVI Reactor Modeling

Homogeneous phase
(240 reactions and 27 species)

Heterogeneous phase*
(275 reactions and 66 surface species)

Methodology

1) Partial decoupling between gas
phase and densification process

2) Operator-Splitting technique for
CFD simulations and Fully-coupled
approach for CVI simulations

A. Cuoci, A. Frassoldati, T. Faravelli, Numerical Modeling of reactors for
Chemical Vapor Infiltration (CVI) with detailed homogeneous and
heterogeneous kinetics, ISCRE25, Florence (ltaly) (2018)

* Lacroix R, Fournet R, Ziegler-Devin |, et al. Kinetic modeling of surface
reactions involved in CVI of pyrocarbon obtained by propane pyrolysis,
Carbon, 2010, 48: 132-144
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bulk density after 70 h



Mean bulk density

Temporal evolution of mean bulk density
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Training dataset: Plug Flow Reactors

Plug Flow Reactors with imposed temperature profile

Baseline
t . 1060-1150 ¢ Inlet stream (% mol)
emperature profile
CH4 98.84
150 C
C2H6 0.11
-{ Plug flow reaction (constant pressure) b C3H 8 O O 1
0.25s 1.00s N 2 1 04
Temperature range: 1060-1150 C 1 Vo1a
Time range (ramp): 0.10-0.50 s 095 F '
gl 10.12
0.85 101
"‘3 e | 10.08 ?';
Database 8 075 8
e 1006 g
* 500 Plug Flow Reactors 07}
e ~120,000 observations 065 ™
o1 10.02
0.55 i : : . 1
0 0.2 0.4 0.6 0.8 1 12

time [s]
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ANNSs training based on Principal Components

The ANNs are not trained on the composition, but on the first 4 Principal Components

100% 6
190% 4r
180% 2r
170% 0r
160% 2T

o
150% 8 -4

{40% 6+

Variance Explained (%)

130% -8
‘ 30 clusters
{20% 10+
110% 121
0% 14 . . . . . . . . )
1 2 3 4 ’ -4 -2 0 2 4 6 8 10 12 14
Principal Component PC1
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ANNs Training

%10 Error Histogram with 20 Bins
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* Number of hidden layers: ~2
* Number of neurons per layer: ~10
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Computational performances

I transport step Additional time is

[ chemical step / ANN | .
[CIPCA & classification / require d for

performing the PCA
(projection on the

% B main PCs) and for

-§ 5 classifying the cells

S 4y (30 clusters)

/'
1r .
The maximum i | N 4 (il;fferentI Al!NS perh
theoretical speed- Complete  ANN +PCA cellare solve ateac
: time step
up is 3.70
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Final remarks

Chemistry Acceleration to enable the adoption of detailed chemistry in CFD of combustion
and heterogeneous catalysis can be carried out at different levels:

i. reduction of chemical complexity
ii. reduction of number of reactive environments
iii. replacement of stiff ODE solvers

Chemistry Acceleration techniques can take advantage from Machine Learning:

i.  Unsupervised classification (k-means, LPCA)
ii. Regression via feed-forward ANN

Some of the Chemistry Acceleration techniques relies on a time-consuming trial-and-
error process (especially correct definition of ANN architectures)

Chemistry Acceleration & Machine Learning is a relatively new field, thus not yet mature,
with significant potential benefits to be better explored.
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